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0. A. Dermanis, his works, and the system theory of Polar Motion (POM)
and Length of Day Variations (LOD), an introduction

At first we review the very important works of A. Dermains with respect to Geodetic
Reference Frames, based on surface deformation measures like dilatation, shear,
rotation and energy. Special attention finds Frame Invariance and Parameter Esti-
mability.

The following parts of the author’s work on Global Reference Frames in concen-
trated on the subject of System Theory for Polar Motion (POM) and Length of Day
Variations (LOD) experienced by studying Bulletin A, Vol. XXIX, No. 046, on No-
vember 17, 2016. The analysis the new USNO VLBI solution using

least Earth Orientation Parameters (EOP). The contributed analysis of results is
based on data from

Very Long Baseline Interferometry (VLBI),

Satellite Laser Ranging (SLR),

Global Positioning System (GPS) satellites,

Lunar Laser Ranging (LLR), and

meteorological predictions for variations in Atmosphere Angular Momen-
tum (AAM)

They start with the International Earth Rotation System (IERS) Rapid Service for
weekly outputs, predictions of the Polar Motion as well as the difference between
UT1-UTC (Universal Time Coordinated), also daily and Celestial Pole Ofsets Series.

1. Athanasios Dermanis and the problem of Geodetic Reference Frames,
an introduction

Athanasios Dermanis, in short “Sakis”, pioneered the topic of Geodetic Reference
Frame by studying Earth Rotation and Network Geometry by studying the optimiza-
tion of Very Long Baseline Interferometry (1977, 19784, ii, 1980). Our first joint
paper published in the prestigious “Geophysical Journal of the Royal Astronomical
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Society 64(1981)31-56” treated the estimability problem of geodetic, astronomical
and geodynamical quantified in “Very-Long-Baseline-Interferometry” honoring the
90th birthday of Sir Harold Jeffarys. My own contribution was oriented to include
relativistic terms which had been beforehand declared as measuring errors on the
post-Newton level.

Sakis widened his interest in the analysis dilation, shear, rotation and energy for de-
formable, rotating bodies. (1982, 19831, ii, iii, 1984) We wrote another joint paper
by the finite element approach to the geodetic computation of two- and three-dimen-
sional deformation parameters, a study of Frame Invariance and Parameter Estima-
bility in the year 1992.

Earth rotation became for him of central importance and was the subject of key in-
terest in Geodetic Reference Frame, in general. (2000; 2001; 20034; ii; iii; 20051; ii;
2006; 2007; 2009i; ii; 20101; ii): Fundamentals of Surface deformation and applica-
tion to construction monitoring were key subjects in (2011, 2013). Global frames of
reference as well as determination of transformation parameters between various ge-
odetic frames of reference are of key importance for him (2015, 20164, ii).

Sakis is for many years the key theoretician in analysis systematically time deform-
ing geodetic network in one-, two-, three- and four-dimensions! He gave advice to
colleagues for the analysis of Global Reference Frames and the transformation be-
tween them! We hope that he likes my also systematic study of Polar Motion (POM)
and Length of Day Variations (LOD) by means of System Theory.

2. System theory: The dynamical Euler-Liouville equations-angular mo-
mentum balance, and excitation functions

2.1 Introductory remarks: angular momentum balance, rotation axis, axis of
figure

In order to develop a System Theory of the rotation of celestial bodies we have to
take advantage of the rotational motion on the basis of the balance equations of linear
and angular momentum of a deformable body. We have to refer the basic work of
M.L. Smith (1974,1981), P. Georghiadun (1984) and P. Gorghiadun and E. Grafar-
end (1986). It is well known that the balance equations of the angular momentum are
sufficient to describe the rotational motion of a rigid body, but not so far a deforma-
ble body. The equations of linear and angular momentum for a deformable body are
coupled. Excitation mechanisms generate torques due to tidal effects by the Sun, the
Moon and other planets for instance. We are in need to develop multibody dynamics
of deformable bodies! Beside external acting momentums there are internal effects
which are effecting torques, for instance loading mechanisms to the mantle caused
by the triple system oceans atmosphere-solid celestial body, transversal surface
stress and various core mantle interactions effects of first order. At this point we
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must mention the basic work of C. Truesdell (1961): According to his table, we must
neglect here spin angular momentum, the momentum stress as well as degree of free-
dom of type Cosserat Continuum which relate to the antisymmetric part of the stress
tensor.

2.2 Dynamical reference frames and rigid body dynamics

We start from here the commutative diagrams in decomposing the velocity field in
three parts, namely in Figure 2.1 and Figure 2.2 and 2.1 and Table 2.2. L, L and
Ly . The balance of the moment of the momentum in a quasi-body fixed frame of
reference is organizing in the spin-orbiting coupling L, , and in the rotation-defor-
mation coupling L1 + L, = L+ 6L which L; accounts for the torque of the rigid
body as a first approximation and L, for the torque cancel by the dynamics of de-
formable bodies of Liouville type as a second order approximation.

In our perturbed balance equation we have denoted by w; or {wi,w2,ws} the an-
holonomic three coordinates of the rotation vector in the quasi-inertial reference
frame, {f1, />, f3 | 0} an orthonormal Frenet tried, &u the Cartesian coordinates of
the inertial tensor

ZZJ:I 5@ 1 (1)

in the frame of reference {f;,f>, f; | 0} with respect to the mass center 0 of the
planet. Since the body of celestial mechanics deforms, the coordinates ju of the
tensor of inertial are time dependent, contrary to the rigid body dynamics, namely
dju / dt # 0 . While

Ly = ju® + jr@y + Sjji J jm @iy, 2)

are the coordinates of the reference angular momentum, the so-called “incremental
angular momentum” in the quasi-body fixed frame of reference {f, f>, 3|0}, we
refer the perturbed angular momentum, the “incremental angular momentum” by

we introduce the Liouville perturbation theory based on L. Euler in E. Grafarend and
K. H. Haner (1976) including second terms. The acting moments

DAL )

are placed on the right side of the balance equations, 0 ji; denotes the incremental
moments of inertia usually on the left side of the balance equations. The structure of
the balance equations of angular momentum is generated by the triple decomposition
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of the local velocity field in Table 2.1. The term of zero order is determined by the
velocity U, for instance of the center of mass of the Earth, obtained by “COM”,
relative to the inertial reference point 0. [llustrated by Figure 2.2.

The contribution of the first order of the velocity field vi results in a velocity field
generated by the rotational dynamics, the second order velocity field by the time
dependent displacement field of the deformable body relative to the global rotation”.
The term v2 is caused by the “relative angular momentum” L —2 , also called oL .

The term of zero order is related to the “spin-orbit coupling” related later. The other
coupling terms of first and second order are mentioned by the “rotational defor-
mation coupling”, again treated separately.

While in Table 2.2 we have introduced the linearization of the rotational defor-
mation, also called ‘‘first Liouville perturbation”, we used in addition the lineariza-
tion of the tensor of inertia J = j+ & and of the rotation vector Q = @ + dw also
called the “second Liouville perturbation”. Also, the second perturbation applies to
the torque M = m + 6m . The splitting of the balance equations of angular momen-
tum leads in the first approximation to the classical

rigid body rotation and in the second approximation to the incremental angular mo-
mentum balanced with terms of second order. In order to present simple solution of
the incremental angular momentum equations we agree to two assumptions:

First, we fix the axis of the reference inertial tensor, the so-called eigenvectors,
to the principle components of the inertial tensor, namely

Jn=4"jn=8"j3=C"
assuming D* = E* = F* =0.

Second, we assume the reference rotation follows the so-called z-axis. In system
dynamics upped two balance equations of polar motion with dimensionless param-
eters x| = 0w, / w, X, = 6w, / @ But, in the balance equation of the perturbation
of the Length of Day (LOD) the dimensionless perturbation parameter x; := dw; / @
is introduced decoupled from the other two components ( x;, x; ).

2.3 The Euler balance equation of angular momentum:
Liouville perturbation theory

The next step of the Liouville’s perturbation theory of angular momentum is directed
towards modeling the timelike variations of the incremental inertia tensor o jy; .
These solutions have been developed with respect to the local linear momentum bal-
ance equations, for instance solving the gravitoviscoelastic field equations in the
Habilitation Thesis of D. Wolf (1997). We introduced the solutions in time-varying
incremental inertial tensor in E. Grafarend, J. Engels and P. Varga (2000).
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Here again refer to a recouping of the incremental inertia tensor towards the incre-
mental potential coefficients o of degree 2, m = {-2,-1,0,+1,+2} specified to

e loading effect in the time domain, retarded
e tidal effects in the time domain, retarded
e centrifugal potential in the time domain, retarded

referring to the Love number ky g or to the Love kernel number function kg(t —t")
International Reference Sphere of radius R. Specifically, the “Fluid Love Number”
ky s are reviewed. In particular, the influence f of the incremental centrifugal po-
tential was studied since it is linear in { x,x" }.

Table 2.1: Principle of Balance of moment of Momentum: angular momentum in a
quasi-body fixed frame of reference (rotation reference frame) first Liouville
perturbation

“three constituents of angular momentum”
L,+L +L,
Li+L,=L+6L
“spin orbit coupling’
D,L,+QxL, =M,

L, =M(v, xx,)

“orbit angular momentum”
“rotational-deformation coupling”

D(Li+L)+Qx(Li+L))=M,+ M,
JuDQp + (DT )Qp + 8 QJ jyQyy + DS Ly + 6 Q;6L; = M,
“inertia tensor”
J=f® Iy,
(summation convention over repeated indicies)
T = 4fppCey. I x1 b - vonldrdy dz
“angular momentum”
L= §fp p(x. v, [ () x x5y — yey)dvdy dz
Ly = 4fp p(x..2) (02 x x5y — w1 dr dy dz

End of Table 2.1: first Liouville perturbation
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Table 2.2: Fundamental decompositions of the velocity fields

v(x,t) =0,(x,t) + Ly(x,1)

| zero order velocity v,

the zero-order velocity v, represents
the velocity of the center of mass
(COM) of the celestial body with
respect to an inertially moving
reference center

| first order velocity v;

the first order velocity v, represents
the rotational velocity of type
rotu; =2m
Corollary
V= ®XxX
UV = 0 @; X,
Q=-0f

second order velocity v, ‘

the second order velocity v, (x,7)

represents the displacement rate of the
deformable body (celestial body)

End of Table 2.2: Fundamental decompositions of the velocity fields
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Figure 2.1: Decomposition of the velocity field v(x,#) commutation
diagrams, Placement diagram P

topocentre left B P topocentre righ
¥

mass cen 0, 0, mass centre

left body right body

Figure 2.2: Frame of Reference: {£;, £, E5 | 0} versus { /1, f2, f3 | COM} |

epochs # and ?, , fixed frame versus moving frame

{£.. funfilCOM :1,) {£. £ fy|COM :1,}

{E,.E, E,|0}
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Figure 2.3: Principle of Balance of Moment of Momentum Angular Momentum in
a quasi-body fixed frame of a reference Liouville perturbation theory

“Inertial tensor”

Ji = Ju+0ju
special choice
=45 =B, j53=C
(all other components vanish)

“rotation vector”

Qk =y + 5C()k
special choice: W3 = (all other components vanish)

dimensionless x; : 0wy + wx;,

“force moment torques”’
My =m + o my,

’

“Euler-Lioville equations of angular momentum’

(ki + 0 Ji) Dy (g + Say ) + (e + 6y ) D; (g + O ji) +
+ Gk (@ + 66;)(Jjm + 6 jjx @y + 0y, ) +
+D; 0L + G (@ + 6w;)SL; = my +Smy,

reference angular momentum equation
JuDi@; + @Dy jig + 8k @; j jm @, = My

incremental angular momentum equation
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JuDow; + 6y (,,60; + ®;00,,) +
+a)]Dt]kl + 5i]'k0)'a) 5]]m +
+Dt5Lk + 5]ka) §L + 0(2) = §mk

“jin =0, jua %0, jis = 0:all others vanish”

Lst : jiiDo0@ + @ (f33 — jo2)0w3 + @3(f33 — jo2)0@r + AD, ji 1 + Dy iy + 3D, i3 +
— 308 o1 + D6 31+ @03(8 j3 — 6 jon) + @36 j31 — 036 jo3 + DLy + 5Ly —y5Ly +0(2) = 5my

2nd : jp,D,00, + @3 (jiy — j33)00 + @ (ji1 — j33)00 + @D, jon + D, ja s + @D, joy +
— @0 J35 + @06 i, + o (51 —0j33)+ a)325j1,2 - 0)125J3,1 +DSL, + 30 L — 6L +0(2) = 5my

3rd : j33D,005 + @y (Jo2 — J1,1)00s + @ (jo2 — Jj11)00 + 3D, 3 + @D, jz; + @D, j3, +
— 30 iz + @30 jo3 + Dy (6 frp — O f1y) + 0)125j2,3 - 0)225j1,2 + DL + 0 SL, — 5L +0(2) = 6my

Ju=4, oy =B, j;3=C":all other jj; vanish
and

w3 = @ : all other w; vanish

wx| = 0w, ®X, = 0M,, ®X3 = OW;

1st: Aa)xl + a)z(C - B)XZ + w5j1,3 - 6025].2,3 + 5L1 - CO5L2 =X
2nd : BCOX2 — 0)2(14 - C)xl + 0)5‘]'2’3 - w25j3’1 + 5L2 - CO&Ll =Xy

3rd : CC()X3 + 0)5]'3,3 + 5L3 = X3

‘ End of Figure 2.3: Liouville equations

‘ Example 2.1: Incremental inertia tensor generalized Mc Cullagh representation

T /2
Sjiz =003 = —Idl J d(DCOS(pI 2drép(A, @, r)xy
-r/2
T /2
8 jaz =0ip3 = —Idxl I dgocosgoj 2drép(A,@,1)yz
-r/2
T /2
S jas =—jd,1 j dgocosq)j 2drSp(A, @, 1) (x2 + ¥?)
-r/2
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“incremental gravitational potential (deformation potential)”

0 / 1+1
R
5”(1’9 (8 I") = Z Z [l") el,m (2” q))é‘ul,m

=0 m=—1

o - 10

—=e’, y=—=e’  , Zz=—f=¢€
BT A NE]

X =

“generalized Mc Cullagh representation”

Ouy, = \/Eliﬁ op(x,y,z)xz dxdydz

3
Ouy 1 = \/;;qﬁ.) op(x,y,z)yz dxdydz

, ) 5 R3 . , 25 R?
5]1,3 = 511,3 = —\/gg&lz,b 5]2,3 = 512,3 = —\/7&‘2 —1» 5]33 = —7?51420

End of Example 2.1: Incremental inertia

Example 2.2: Linearized centrifugal potential

ov(cent) :<a)| 5a)>x2 —<a)| x><5a)| x>

ov(cent) = a)[&% (x? + y? +2%) - Sy xz — 5a)2y2]

Sv(cent) = a){éag §r2 {1 - \/lg (A, qo)} - \71% [&qez’] (A, @)+ 6ane®>\ (4, (p)]}

2 1
ov(cent) = @ dan irz + % Z vy (cent) €™ (1, 9)
m=—1

“coefficients of the lineared centrifugal potential”

R? R? R?
oV, (cent) = —w —— 0w, Ov,y(cent) = —w——ow;, Ov, (cent) = - — ow
2,1( ) \/E 2,0( ) \/E 1 2, 1( ) \/E 2

End of Example 2.2: Linearized centrifugal potential
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Example 2.3: Love-Shida hypothesis, homogeneous spherical shell presented vis-
coelastic Earth model in the time domain (Earth radius R)

t
0w, (1) = [1 + ky (load, elastic)] ouy , (load) + J-kZ,R (load ,t —t") 6u, ,(load ,t")dt’'
0

t
+ky (tidal , elastic) 6u, ,, (tid , ) + J ky g(tid t —t") Suy , (tid ,t") dt’'
0

t
+ky (cent, elastic) Ou, ,, (cent,t) + J‘ksz (cent,t —t") Su, ,, (cent,t")(t") dt'
0

“k, (elastic) as a dimensionless constant: instantaneous reaction to the action of
the excitation function”

“ky g (t —1") is a Love viscoelastic kernel function on the terrestrial sphere S? of
dimension 1/time. For a R homogeneous spherical shell viscoelastic Earth model,
the Love kernel function k, (¢ — ¢') can be represented by

J
kyr = Z},:lkj exp(—s,t)

J is the number of nodal points (“Nullstellen) of the secular determinant of the
Laplace transformed gravitoviscoelastic field equations?”

“Fluid Love number”

The fluid Love number &, , of degree 2 is achieved when we set the excitation
function as a constant and if we go to the limit  —>0. In this way the model Earth
has time to relax to the constant excitation.

t
ka.p =k (elastic) + lim [ ey (=) dt' =
' t—0 0
t g
= ks (elastic) + lim [k [exp—s(t—t)]dr =
RV

J k.
= ky (elastic) + Z—j
J15)

End of Example 2.3: Love-Shida
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Example 2.4: Parameter of an Earth model with 5 interfaces radius density shear
modulus dynamic viscosity

Radius Density Shear modulus Dynamic viscosity
(m) (kg/m?) (kg/ms?) (kg/ms?)

0000000.0

10932.0 0.0000x107% 0.0000x107%
3480000.0

4878.0 0.2190x10*'2 0.1000x107%
5701000.0

3857.0 0.1060x10""2 0.1000x10"2
5951000.0

3434.0 0.7270x10"!"! 0.1000x10"*
6250000.0

3184.0 0.6020x10™!"! 0.1000x10%%
6371000.0

End of Example 2.4: Interfaces

Example 2.5: Nodal points of the secular equation number relaxiation time inverse
relaxiation time

Relaxiation time Inverse relaxiation time

number (year) (1/3id)
1 250.9310 -0.3985x10"!
2 282.2692 -0.3542x10"!
3 352.8929 -0.2833x10"!
4 402.8933 -0.2482x10!
5 494.2672 -0.2023x10"!
6 2224.9892 -0.4494x10"°
7 9083.7657 -0.1100x10*°
8 530740.5736 -0.1884x10
9 708982.2371 -0.1410x10™
10 28063129.4519 -0.3563x10°™
11 592709956.3718 -0.1687x10°%

End of Example 2.5: Nodal points of the secular equation
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Example 2.6: Load and Love number: components of various frequencies Load

number Love number

Love number Love number
number Ksei(load) K «(tide, cent)
0.3050x10"%° 0.3050x107%

K, r(load) K, r(tide,cent)

1 -0.1155x10"% -0.1897x10"%
2 -0.9956x10™"! -0.1136x10"%°
3 -0.2743x10° -0.3671x10"
4 -0.7762x10°" -0.8120x10°"
5 -0.3350%x10"° -0.4265%10"%
6 -0.1409x10" -0.8122x10™
7 -0.2190x10° -0.8207x10°
8 -0.2396x10°% -0.2261x10°*
9 -0.1077x10°% -0.1524x10°*
10 -0.2219%107% -0.1124x10°"7
11 -0.5612x10™ -0.1123x10°%

End of Example 2.6: Load and Love number

Example 2.7: Incremental inertia tensor generated by the incremental centrifugal

potential (generalized Mc Cullagh representation:
J. Geodesy 74(2000), 519-530)

m
7=g42

3
1st : 5_].1,3 = —\/31;5142’1 =

2p5 RS -
k, (cent, elastic)x; (t) + e I ky(t —t',cent)x,(¢") dt’'
g0

3
2nd : 5]'3,3 = —\/5};5142,1

2 ps 2 p5
@R ky (cent, elastic)x, (t) + a)3R
g

t
j ko (t —t', cent)x, (¢')dt'
0
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3
3rd : 6].3’3 =_§R75u2,0
3 g

t

2 p5S 2 p5S
4o”R 4o R [ kot =t centyxy (¢t
0

= ks (cent, elastic)x; (t) +
9¢g 9¢g

End of Example 2.7: incremental centrifugal potential

Example 2.8: Time derivative of the incremental inertia tensor generated by the in-
cremental centrifugal potential

“3 terms”

. 2 p5 ! .
Ist: 6j5 = a)3§ {kz (cent, elastic)x, (t) + ky g (0, cent)x; (t) + J.kz (t—t',cent)x, (l')dl’}
0

. 2 D5 ! .
2nd: 6,5 = 0)35 {kz (cent, elastic)x, (t) + ky (0, cent)x, (t) + J. ky(t —t',cent)x, (t')dt}
0

: 40*R> ‘.
3rd: 85 = 9 ky (cent, elastic)x; (t) + ky g (0, cent)x;(t) + .[kz (t =1, cent)x;(t"dt'
0

(R. P. Kanwal: Linear integral equation, Academic Press, New York — 1971 page
265, formula (2))

B(1)

B
| s = [ Ly re sy - rie oy
A(t) A

d
dr

End of Example 2.8: Time derivative of the incremental centrifugal potential

2.3 Liouville perturbation theory: system equations in the time and in the
Laplace-Fourier domain

The Liouville perturbation theory of the Euler dynamical equations of angular mo-
mentum of the Earth considered as a deformable body leads to a first order inhomo-
geneous system of integro-differential equations, which are classified in terms of
system theory. With respect to a viscoelastic Earth model of homogeneous spherical
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shells the spectrum of the Liouville operator is analyzed. Following a proposal of M.
Schneider (Proc. Bundesamt fiir Kartographie and Geodaesie 5, pp. 28-33, Frankfurt
1999) the first order system is differentiated to a second order system and being al-
ternatively classified as a second order inhomogeneous system of integro-differential
equations. It leads to the interpretation that the characteristic equations of Polar Mo-
tion represent an excited coupled, damped approximately elliptic oscillator while the
characteristic equation of Length-of Day variation documents an excited, damped
non-periodic motion. Solutions are represented both in the Laplace domain as well
as in the Fourier domain. New solutions are presented in the dynamical waveled
domain as well as in the fractal domain, tentatively.

It is one of the first contributions in applying techniques of System Dynamics when
M. Schneider (1999) presented his variational equations for the study of Polar Mo-
tion: He moved the excitation functions of the relative angular momentum, namely
the tidal effect, the leading terms and the core-mantle coupling, for instance, to the
right side of the balance equations of angular momentum. They are effecting in line
with the incremental torques the balance in a mathematical portray: they are called
“inhomogeneous part”. We describe the basic equations in Table 2.3 up to Table 2.4
in terms of balance of momentum of momentum, namely angular momentum, for
Polar Motion and Length-of-Day variation.

In detail, Table 2.4 refers to the inergro-differential equations of type X*=Ax+

+ f(x) + b of Polar Motion. As proposed by M. Schneider the first order differen-
tial equations were transformed into a system of second order differential equations.
We identify in terms of a second order differential equations Polar Motion equations
X +(F—A*)x+(Af + fiy) = Ab+1",

as an excited damped approximately elliptic harmonic oscillator

In contrast, we analyze in the time domain the intergro-differential equation
X5 =ay+ f305)+b for Length of Day variation. The retarded system equation of
first order are transformed to a system of second order x§*—&x;—(ayfs+/3)=
= ay3b; + b3 , interpreted as an excited, damped, non-periodic

function due to az3 >0 .

At this end, we list some books on System Dynamics, for instance 4. M. O. Almeida
(1988), M. W. Hirsch and S. Smale (1974) and L. Perko (1996).
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Table 2.3: Principle of Balance of momentum (angular momentum) in a quasi-
body fixed frame of reference-polar motion equations in the time domain

“I'* polar motion equation”

{A+w32R5

+a){C—B—

t
ky (cent, elastic) } X + a)32 ky r(0,cent)x + _[kz (t —t',cent)x (t")dt’'
0

g

t
@R k (cent, elastic) } X — @ I ky g (t —t',cent)x, (t")dt' =
3g 3g 3

= f(incr,torque, rel.ang. mom., tide,load, stress)

“2" polar motion equation”

a)st
3g

®?R5 ! .
[ B+ 3 ky (cent, elastic) }'cz + ko g (0,cent)x; + _[kz (t—t',cent)x,(t")dt'
g 0

t

2R5
@ j ky (¢ —1', cent)xy(¢')dt' =
0

3g

= g(incr,torque, rel.ang. mom., tide,load, stress)

2 RS
@ ky (cent, elastic) } X —
3g

+a)[A—C—

End of Table 2.3: Angular momentum, polar motion

Table 2.4: Polar motion equations in the time domain

“system of intergrow-differential equations of first order evolutionary equations”

2 RS 2 RS L
a{ B-C+ a)3 ky (cent, elastic) } X — a)T ky (0, cent)x; — Ikz (t—t',cent)x (t)dt' + f
Ist:x = g g 0
0*R° .
A+ ky (cent, elastic)
3g
t
a){ A-C+ LS ky (cent, elastic) }q - @ Iy (0, cent)x, — Ikz (t—t',cent)x,(tdt' + g
2nd : x, = % ‘e 0
. 2 -

|: B+ a);f Iy (cent, elastic) }
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[i=dx+ f(x)+b|

-1 255
R ky r(0,cent)
3g ©

o’ R’

k, (cent, elastic) }
3g

(1151 = —|:A+

2 p5 T 2 55 7

q,=—| A+ @ R k (cent,elastic) | w| B—C + k (cent,elastic)
2 pS T T 2 ps 1
R R
@, =—| B+ a;g Iy (cent,elastic) | o| A-C+ Y I (cent, elastic)

WO R’ 1255
@y =—| B+ Iy (cent, elastic) ky g (0, cent)
g g
PR Tl
filx) = —{ A+ ky (cent,elastic) _[kz (t —t',cent)x(t"dt'
g 1%
JEPE T
fH(x)=- { B+ ky (cent, elastic) J- ky(t —t',cent)x, (t")dt'
g 4%
PR’ -1 W2 RS -1
b= { A+ 3 ky (cent,elastic)} f, b= {B + 3 ky (cent,elastic)} g
g g

fi(x) b
' =: , =b
{fz(x)} /) L)z}

“the eigenvalues of the matrix A”

~2
|4-aL]=0 < | @2

=0 © (a1 -AN(azp—A)—aa,=0 <
az azn — A

AZ —ft(alyl + 02,2) + (ll’lalz —al,zaz,l =0 A/Z —Atrd+det4A=0 &

A2 (A) = %trA + %\/ (trd)? —4det 4

“I*"invariant”

The Global World of A. Dermanis and an attempt to use System Dynamics for the analysis 17
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—detd = Qo —a hr = —|: A+

2 p5

-1
R 2 p5
@ ky (cent,elastic)} @
g

tr4 = al’l + a2’2 = —|:A +

2 5

2 ps -1
| B+ 2 R k, (cent, elastic) @ R
3g 3g

“«“

2" invariant”

W’ R
3g

s 1
@R ky (cent, elastic) ] {B +
3g

5 5

xw| B-C+ @R Ik (cent,elastic) |w| A—C + @R
3g 3g

5

5 -1 !
+ { A+ a);R I (cent, elastic)} {B + QJ;RS I (cent, elastic)}
g g

3g

“special case: a4, =0, a,, =0, 4= B, a5 = —ay,

ky (0, cent)

R ky (0, cent)+
4

1
Ik (cent, elastic) ] X

ky (cent, elastic) } +

I r(0, cent)

”

1
Ao(A)=%Ndet 4 = 1{ A+ % Iy (cent, elastic) I a{ A-C+ ai% ko (cent, elastic) }

End of Table 2.4: Polar motion, time domain

Table 2.5: Polar motion equations in the time domain of type second order

18

“system of intergro-differential equations of second order”

x=Ax+ f(x)+b
Y=Ax+f+b=A(Ax+f(X)+b)+ f +b
Y=A+(Af +f)+Ab+b

$—APx—(Af + f) = Ab+b

“special case: a;; =0, ay, =0, A=B, a1, =—-ay,”

Erik Grafarend



2 :_|:61126121 0 _:|:61122 0 :|
0 app aoy | 0 a}

2 ps 2T 2 ps 2
(A =aty = {A* + a)3R ky (cent, elastic)} ol A -C" + a)3R ky(cent, elastic)} eR*
’ ’ g g

“excited circular harmonic oscillator”
“general case: ar1# 0, a2 #0, A#B, a2 #-ax1”

ﬂ/lilz e R+

“excited elliptic harmonic oscillator”

-1t
k, (cent, elastic) Ikz (t —t',cent)x (t")dt'
0

F(x) =—[A* i

9-11

2p5 )
fH(x)= —{ B+ 2 g ky (cent,elastic) jkz (t —t',cent)x,(t")dt'
0

fl(x) = fux + fl,z
fz(x) = fooxy + fz,z

2 RS -1
2 ky (cent, elastic) } k, (0, cent)

ﬁJu)z—{A*+w

-11

2p5 ..
ko (cent,elastic) J _[kz (t—t',cent)x,(t")dt'
0

ﬁﬂn=—ﬂﬁ+”R

2p5 -
Sr2(x)= —[ B* + a)3: ky (cent,elastic)} k> (0, cent)

-1t

2p5 ..
k, (cent, elastic) } Ikz (t—t',cent)x;(t")dt'
0

fz,z(x) = —{B* + @R

The Global World of A. Dermanis and an attempt to use System Dynamics for the analysis 19
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‘

‘system equations. system of integro differential equations of second order”

$—(F—A2)—(Af + )= Ab+b

Fzz[fl’l 0}
0 fi2

“excited nonlinear damped harmonic oscillator”

End of Table 2.5: Polar motion, time domain

Table 2.6: Principle of balance of Moment of Momentum (Angular Momentum) in a
quasi-body fixed in frame if reference equation of Length of Day variation in the time
domain

“intergro-differential equations of first order”

2p5
kz(cent,elastic)}& +ga) R

2R5
[ 4 o°R ky r(0,cent)x; +

Cr+—
9

t

4 w2 R>
2 J.kz’R (t—1t,cent)x3(t)dt'=
0

t
+ [y (e =t centyxy ()t + 5
0 9 g

= h(incr.torque,rel.ang.mom.,tide,load ,stress)

“system of equations”

X3 = aszzx3+ f3(x3)+ by

"4 2R

2ps
40°R kz(cent,elastic)} )

a3,3 = |:C>!< +§

ky (0, cent)x;

-1t

2p5 .
ACAL k, (cent, elastic) } sz (t —t',cent)x;(t")dt’
0

fi(x3) = [C* +§

2 ps -1
by = [ C* + g ng ky (cent, elastic)} h

End of Table 2.6: Length of Day variation, time domain
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Table 2.7: Length of Day variation in the time domain

“intergro-differential equations of second order”

X3 = azz x3 + f3(x3)+ by

Yy =a3+ ity =ags(asn + f5+0) + f3+ b

“ . ”»
system equation

X a33x3 (assfs"‘f3) a33b3+b3

-1t

5 )
R ky (cent,elastic) } J ky(t —t',cent)x;(t")dt'
0

jg(xg):z[mg“’

: 4 2R T :
f(05) = [ C+ 3 ke (cent, elastic) } Ikz (t—t',cent)x;(t")dt' + ky (0, cent)xz(¢)
0

4 ®?R>

jé(X3):=|:C+§

-1
k, (cent, elastic) } kz (0, cent)xs(t) +

-1t

2pR5 )
J{ C+ g @°R k (cent,elastic) } jkz (t —1t',cent)x;(t")dt’'
g 0

fi=as fa1+ faz

: 2 -
fa1 = { C+ 4 a)gR ko (cent, elastic)} k> (0, cent)x;(t)

-1t

2p5 .
o’R ky (cent, elastic) } J‘kz (t—t',cent)x;(t")dt'
0

: 4
f‘3,2 .—|:C+§

“system equation: intergro-differential equations of second order”

¥y =(f31— a32,3)x3 —(a33f5 + f3,2) = ay3b3 +53

End of Table 2.7: Length of Day variation, second order differential

At this end, we intend to illustrate the solutions of the differential equations of second
order for Polar motion (POM) and Length of Day (LOD). They generate
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Figure 2.3: POM

(AN 7N xl
Y\

b>0 <0
X2 X2
b~ /"ﬁ
/o~ % A X
o/ .
b>0
b<O

End of Figure 2.3: POM

Figure 2.4: Excited damped, non-periodic motion of LOD

X

Xy

End of Figure 2.4: LOD
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2.4 Laplace - and Fourier transformed incremental angular momentum
balance

The balance equations of angular momentum are new transformed by two different
kinds to the phase space. Therefore, we apply first the Laplace transformed, second
the Fourier transformed. While the Laplace transform predicts starting form an ini-
tial time epoch ¢ =0, the time behavior at another time epoch ¢ = ¢, . In contrast, the
Fourier transformation applies from a time epoch -« to a time epoch +« . This
different behavior assumes that the initial state at #=0 in the concept of Laplace
transformation has to be known. Therefore we have to guess the initial push or jump
in the rotational motion in applying the Laplace transformation. When we apply the
Fourier transform the information is not necessary, we do not need information
about the history of the rotational motion, but we have live with reliable information
of our model. We review therefore by Table 2.8 the Laplace transform and Table 2.4
the Fourier transform for the incremental angular momentum

Table 2.8: Laplace transformed incremental angular momentum

As6%, + 58]y 3 + (C — B)5Xy + %8 jo3 + 5L, — @S, %
Bsdx, + 503 o3 + (A~ C)3%, + @*3 i3 + 6L, —wdLy |=| %
CS&)?:; + Sw5j373 + Sﬁij )7:3

. 5 R3 - - S5RY - o .
X =—sS® 57(1 + ky(load))ou, s (load) — s ngz (tid)ou,  (tid) +

Sw?R3

/€2 (cent)y, + Asx; +
3g

3
—sa)\/ER—kz (str)du, ((str) +
3¢ ’
- 5R3 ~ _
+ o(C - B)x, + w? g—(l + ky(load))ou, _(load) +
4

SR - o SR - .
+ w? g—kz (tid)Su, i (tid) + w? g—k2 (str)duy _(str) +
g g

3RS v g
@ ko (cent)x, + 0L, — wd L,
4

_ 5R3 - g 5RY - . . )
Xy = —5@ 5_(1 + ky(load))ou, _ (load) — s g—kz (tid)ou, _, (tid) +
g g

Sw?R?

3 _ .
—sa)\/ER—kz (str)éu, _ (str) — ky(cent)y, + Bsx, +
3¢ ’ 3g

3 -
+ (4 -C)F - wz\E R?(l + ks (load))5ity , (load) +
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3 _ 3
— w2\/§%k2 (tid)gﬁz’,l (tld) — a)z\/gR?kz (Str)é‘ﬁzj,l (Slr) +

a)3R5 -

+ ky(cent)x, + s6L, — wSL,
3g
X3 = =50 i—(l + k2 (load))ou, o(load) + s #—kz (tid)Su, o (tid) +

2/5 R

——k2 (str)duy o (str) — sw? iR—kz (cent)y; + Csxsy + S5L3
3 g 9 ¢

End of Table 2.8: Laplace transformed incremental angular momentum

Table 2.9: Fourier transformed incremental angular momentum

Ai0)% + ()35 i3 + 03(C = B)X, + 036 o5 + (i0)SL -y, | [ %
B(iw)x, + (10))0)35]2 3+ @3(A-CO)x; + 5]1 3+ (i®)5L, - 6035L1 =| %
Cliw)x; + (za))a>35 Jaz+ (za))5L3 X3

% = —(im)m\ﬁ LS (1 + ky (load))Sit, y (load ) — (iw)wﬁ R—31€2 (tid) Sl (tid ) +

—(zw)w[—kz (str)ou,  (str) + u )a; kz (cent)y; + A(iw)x, +

+ @(C - B)%, + wz\/g = (1+ ky(load))5ii5_, (load ) +
g

3 . 3 .
+ wz\E B widysivy - (rid) + wzﬁ Bk (st (str) +
g g

3R>

lgz (cent)x, + s51:1 - w51:2
3g

- . 5R3 ~ - ) 5R3 ~ . )
X, = —(za))a)\/:—(l + ky(load))éu, _,(load) - (la))a)\/;?kz (tid)ou, _(tid) +

%152 (cent)j, + B(i®)%, +

—(zw)w[—kz (str)ou, _(str) —
+ o(4d-C)x - a)z\/gg(l + ky (load))ou, (load) +

3 . 3 .
— a)z\/g%kz (tld)gﬁl_l(tld) - wz\/gR?kz (Str)é‘ﬁz’_l(st}’) +
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@3RS ~

+ ky(cent)%, + sSL, — w5 L,

=—(io)w iR—(l + k2 (load))du, o (load) + (zco)a)iR—kz (tid o1y o (tid ) +

25 R

+ (la))a)—?kz (str)diiy o (str) — (iw)w? g%kz (cent)y; + Ciw)x; + (zw)5L3

End of Table 2.9: Fourier transformed incremental angular momentum

By means of Table 2.8: Laplace transform and Table 2.9: Fourier transform we char-
acterize in inversion process of the incremental angular momentum equations:
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Table 2.10: Laplace Transformed incremental angular momentum

1%: Polar Motion

“solution to the inhomogeneous equation”

2p5 2p5
s+ R centy) o€ - B -k centy) |
3g 3g [ X1 }
2p5 2p5 e
od—C+ 2 Fcentyy 5B+ by (cent)) ?
3g 3g

7711 —S5Zl - 0)5va +
3 - - - - - -
+w\E éig[ (s(1+ k2 (load ))5v,1(load ) + sk (tid 5,1 (tid) + ska (str) v (str) — (1 + k2 (load )5V, -1 (load) — wka (tid )5V, -1(tid) — wko (str)3a, 1 (str) |

na —S5Z2 — a)é‘L +

3 - - - - - -
+a)\/§§;|: (s(L+ k2(load))ova2,—1(load) + ska (tid )ova —1(tid ) + ska (str)ova —1(str) — @(1 + k2 (load ) 6va,1 (load ) — wk> (tid)ov2 1 (tid ) — wkz (str)ova, (str) :.
L 4

wZRS 2p5

§ s(B + bcent))  —o(C - B -2k (cent))
[ % } B 1 3g 3g
3 - 2p5 _ 2R5 2R5 - 2R5 - 2p5 _ 2p5 _
2 92U+ CE G cent)(B + L Ko (cent)) — 0> (A C + L2 o (cent))(C = B — L a(cent)| —ao(d— €+ CE o (eent))  s(4+ 2B o cenn)
3g 3g 3g 3g 3g 3g
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[ ova1(load) ]
O (tid)
Vﬂ — 8L + wSLn } \F R} { s(l+ky(load))  ska(tid)  ska(str) —o(l+ka(cent)) —wka(tid) —wka(str) || Svai(str)
a) — —

iy —s8L — 08I 3 ¢ | wl+k(load)) wk:(tid) wky(str) s(L+ka(cent))  ska(tid)  ska(str) || OV2.-1(load)
Ova.—1(tid
L Ova1(str) |
2": length-of-day variation
“solution to the inhomogeneous equation”
_ 25R . N U N .
onz + a)? —[ —s(1+ ka2 (load))ov2.,0(load ) — ska (tid )ov2 0 (tid ) — sk (str)ova o (str) J -0l
X3 = £ 40’ R’
S(C ="y (cent))
9g
End of Table 2.10: Laplace Transformed incremental angular momentum
The Global World of A. Dermanis and an attempt to use System Dynamics for the analysis 27

of Polar Motion (POM) and Length of Day Variations (LOD)



Table 2.11: Fourier Transformed incremental angular momentum

1%: Polar Motion

“solution to the inhomogeneous equation”

2 pSs 2 pS

o)A+ centyy o =B - bcenny) | -
3g 3g [ X }
255 2p5 =
o(d-C+ 2T Lcenty)  (i0)B+ 2 Focentyy |-
3g 3g

rhl —Séjl - a)5L~2 +
+w\E %[ (i0)(1 + k2 (load))5%2,1(load) + (iw)k> (tid )5, (tid ) + (iwYea (str) 52,1 (str) = (1 + k2 (load )%, -1 (load ) — ks (tid) 5%, -1 (tid) — wka (str)5, 1 (str) |

m —S5Zz —wSL +

+w\E %[ (i)(1 + k> (load ))5%,-1 (load) + (iw)ks (tid)5%2,-1(tid) + (i) (5tr) 5,1 (str) — (1 + k2 (load )) 52,1 (load) — wka (tid 5,1 (tid) — wka (str)5¥2,1(str) |
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2p5 2p5 .
[ 5 } i 5 (iw)(B + “’3 5 ka(cent))  —a(C-B- “’3 g 2 (cent))
< | 2p5 2p5 2p5 2R5 -
24 w24+ ”’3 ; fea (cent))(B + “’3 ﬁ Fa(cent)) — (A~ C + “’3 g fea(cent))(C - B - “’3 g ka(cent))| —w(4—C + “’32 gs Fa(cent)) (i) (A+ “’32 ;5 fea (cent))
[ 5tn.1(load) T
o, (tid)
5 {,;,1 —(iw)5L1 + w5 Ls } " \E R [ (@)1 +ka(load)) (iYea(tid) (ioYka(str)  —a(l+ka(cent)) —wka(tid) —wka(sir) || S%2(str)
iy — (i0)5 L2 — w31y 38| w(l+k(load))  wk(tid) — wky(str) (iw)(1+ka(cent)) (iwYka(tid) (iw)ka(str) || V2-1(load)
O 1 (tid
| OV 1(str) |
2": length-of-day variation
“solution to the inhomogeneous equation”
BV NEY I ~ . . -
onni + a)T — [ —(io)(1+ ka2 (load))ov2,0(load ) — (iw)ka (tid ) ov2. o (tid) — (iw)ka (str)Ova,o (str) ] -o0l3
X3 = £ 40 R’
. @ ~
(io)(C - k> (cent))
9g
End of Table 2.11: Fourier Transformed incremental angular momentum
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Before we study in detail the Chander wobble in the next section, we determine the
Zero determinant of the two polar motion components for the resonance oscillation.

Table 2.12: Chander wobble resonance

¢ _38U-O)+k (cent)w* R’
3A4g + ky(cent)*R®

End of Table 2.12: Chander wobble resonance

The backward transformation is illustrated here only for the load potential excitation
due to J. Engels (2006). A typical example for the analysis of Polar Motion is finally
given by H. Schuh, S. Nagel and T. Seitz (2001).

Table 2.13: Laplace forward and backward transformation (J. Engels 1998) for Po-

lar Motion

‘forward transformation”

.30 4
o= . (Ao + Z J Cz,li}(load)(O)Ré
R s —aj

‘backward transformation”

t

30 ~ oa ’ ~ oda ’ !

m(t) = o5 or AREC L (@) + R Y Ay [expla; (=GO (1) i
E j=1 0

Special Case: Heaviside load:
REC;T O = CH(t ~1,)

/30

R:(?

_ V30 Ht _t0)|:Ao N ZA/' exp(—ajt,)] —exp(—a;t) } _

T2 2 }
REQ Jj=1 aj

m(t) =— H(t— tg){ Ao + ZA, exp(a;t)] — %exp(—aj[') } =

.j:1 J t=t,

__ 30 Ay
__Rgng(t—to){Ao-l—jZ:;aj(a_,(t to) 1}

End of Table 2.13: Laplace forward and backward transformation
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Table 2.14: Laplace backward transformation — into (m, m, ) for Polar
Motion (J. Engels 1998)

my +img = —%H(t_to)[%(l/f,load +iV2L,f£1ld)+
E

t
+ Z A, I exp(a;i(t—t')(cos(ajr(t—t")+isin(a;r(t—1t))) % VZL’I"“d (hdt' | =
Jj=l 0

V15
= s [ ARVE ™ — AoV iAoV o V) ¢
E

t
+Y j exp(a; r(t — 1) { cos(aj i (t = W5 (t') —sin(ay.s (¢t — W34 (1) +
J=10

+ icos(ay (t = Wi (') = sin(a; (¢ = Wy () | (Ajr + Ajr)de’ | =

. V15
(l) my = —W[ AO’RVzl"lOad - AO’]szi)(ild +
E

t
+Zjexp(a,-,R (t —t'){ cos(a i (t = ') AjRV5 (1) = Ay V3 (1) +
Jj=10

+ isin(a r(t =14y RV (1) = Ap V20 (') it

y J15
(ii) my, = _W[ Ao RV (1) + Ao V24 (1) +
E

t
> [explar(t =) { cos(ay,s (¢ = t)(As RV (1) + Ay V37 (1) +
J=10

+ isin(ajr (6 — ') (Aj V3 (') = Aj. V34 (1)) | dt'

End of Table 2.14: Linear drift and periodic variations observed in any time series

of polar motion, H. Schuh, S. Nagel and T. Seitz (2001) J of Geodesy 74 (2001)
701-710
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Figure 2.5: Linear drift and periodic variations observed in any time series of polar
motion, H. Schuh, S. Nagel and T. Seitz (2001) J of Geodesy 74 (2001) 701-710
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3. Summary

At first, we heigh lighted the basic work of A. Dermanis with respect to Geodetic
Reference Frames starting with his Ph.D. Thesis on VLBI. His deformation analysis
paved the way for characteristics like dilatation, shear, rotation and energy of central
importance, namely Frame Invariance and Parameter Estimability of key importance
for up-to-date Geodesy in his work on transformation parameters between various
geodetic frames. We embed our own work, which relates to him.

Second, we present to you nearly our System Theory of polar Motion (POM) and
Length of Day Variations (LOD). In case of two identical eigenvalues of the Inertia
Tensor we proved:

Polar Motion is generating an excited circular harmonic oscillator.

This result has to generalized for the general case of three different eigenvalues of
the second order inertia tensor:

Polar Motion is generated by an excited elliptic harmonic oscillator.
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In contrast, Length of Day Variations (LOD) are best described by:

Excited damped un harmonics (non-periodic) motion.

We have a technique for analysis pioneered by M. Schneider (1999) who differenti-
ated first order system equations second order differential equations. They can be
more easily been solved. For the interpretation of the various system equations for
POM and LOD we finished our short review with Laplace and Fourier transformed
incremental angular momentum balance. Damped or alternatively periodic ones are
perfectly described.
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