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1. Introduction 

The problem of connecting the Cartesian coordinates of a set of physical points 

{ , 1,2,..., }=
i
P i �  seen in two different reference frames ( )R  and ( )S , with alge-

braic vector components ( , , )=

T
x y zr  and ( , , )= ¢ ¢ ¢

T
x y zs , is known to be solved, 

when the scale of the two systems is not the same, by a Helmert transformation, 

also called S -transformation, S  standing for similarity, namely 

 = + Uλs t r  (1) 

where t  is the translation between ( )R  and ( )S , with components in ( )S  

 U  is a proper rotation matrix, namely an isometric matrix with determinant 

equal to 1 

 λ  is a scale parameter, namely the ratio between the unit length of ( )S  and 

the unit length of ( )R . 
 
The above definitions imply 

 3
,    (in )= =

T T
U U UU I R  (2) 

 det 1=U  (3) 

 0≥λ  (4) 

In particular (3) implies that there are not an odd number of reflections, or that U  

represents a rotation topologically connected to the identity, i.e. belonging to the 

connected subgroup of the unitary group which contains I  too. 
 
How to realize the transformations is the direct Helmert’s problem, solved by for-

mula (1). 
 
How to derive ( , , )U λt  from known triples of coordinates ,  

i i
s r  respectively in 

( )S  and ( )R , is the inverse Helmert problem. 
 
The problem is quite relevant in Geodesy at both global and local level; at global 

level to align large networks adjusted each in its own reference frame, at local level 

to adjust for instance a local GNSS network to a national reference frame (see [1], 

[3]). 
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Not to be mentioned the use of (1) in photogrammetry, where in fact the first exact 

solution has matured, [7]. 
 
Indeed the degrees of freedom contained in an S-transform are 7, so a limited in-

formation on coordinates in ( )R  and ( )S  can in principle be used to determine the 

corresponding parameters. Yet, since the known coordinates { }
oi
s  and { }

oi
r  are 

usually affected by errors in the respective reference frames, a redundant number 

of points is used, and a l. s. approach is often applied as estimation algorithm. This 

is the practice applied for instance in the determination of ITRF ([1]). The problem 

is indeed nonlinear in several senses, first of all the representation of U  in terms of 

3 parameters, typically Euler angles, is highly non-linear. Second, the product of λ  

by U  introduces another non-linearity in the dependence on the parameters. Third, 

the product of the “observed” vectors { }
oi
r  by Uλ  is indeed a nonlinearity for a 

general adjustment framework, as noticed by A. Pope long ago ([4]). 
 
A standard approach to non-linear l. s. problems is to linearize, starting from ap- 

proximate values of the parameters, and then iterate. Apart form the fact that a 

proof of the convergence is missing, in many cases finding “approximate values” 

for the parameters is not a straightforward task. Consider for instance the case that 

you have to adapt an optical model to the real object when the two are in a general 

position in space and scales have completely different values. 
 
So the possibility of finding exact solutions of the relevant l. s. problem, at least 

under some simplifying hypotheses, is intrinsically interesting. 
 
A first solution, assuming that { }

oi
s  are affected by errors, while { }

i
r  are errorless 

has been found by J. M. Tienstra. The assumption on the stochastic model of the 

errors  = -
i oi i

v s s  (
i
s  values) was simply 

 2{v v }=T

i k i ik
E σ Iδ

 
.  (5) 

It is interesting to observe that the success of the method depends on the idea that 

the full matrix U  should be considered as a parameter and equation (2) should be 

added as a side condition, without going into the matter of the complicated repre-

sentation of U  in terms of Euler (or Cardan) angles. 
 
A second independent solution was then found by the author ([5]), under the same 

simplifying hypotheses on the stochastic model, exploiting Hamilton’s quaternion 

formalism. An approach this that is more used in navigation than in geodesy and 

photogrammetry. To let the reader to get acquainted with the quaternion algebraic 

rules and 3D rotations, in §2 we shortly review the useful relations used in [5]. 
 
Stated in these terms, however, the method has a limited use, specially because to 

assume that one of the two systems of coordinates, normally { }
i
r , is devoid of er-

rors, is too restrictive. 
 
For instance, if one could enhance the model assuming that 
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2

v

{v } 0,  {v v }

i oi i

T

i i k i ik
E E σ δ

= −⎧
⎨

= =⎩

s s

I
 (6) 

and that 

 
2{ } 0,  { }

i oi i

T

i i k i ik
E E ω δ

= −⎧
⎨

= =⎩

r r

I

ε

ε ε ε

 (7) 

as well as 

 { } 0=T

i k
E v ε

 
(8) 

the author believes that the method could be applied, at least for a speedy solution, 

to a much larger number of cases. This will be done in §3 of the paper. A few re-

marks follow in §4. 

 

 

2. Quaternions and 3Drotations 

A quaternion q is an element of 4 3( )∫ ƒR R R  that we shall write in the form 

 = +
o

q q iq
  ;  (9) 

o
q  is called the real part of 3

, Œq Rq  is the imaginary (or vector) part of q , while 

i  is meant to behave like the imaginary unit, i.e. 

 2
1= -i  . (10) 

Indeed 4
R , with its representation (9), is a vector space with respect to ordinary 

sum and multiplication by a real number. What is interesting, is that we can make 

of 4
R  a non-commutative algebra Η  (stemming for Hamilton who first investi-

gated the matter) with the product definition 

 ,  ;  ( )= + = + = - ◊ + + + Ÿ
o o o o o o

q q i p p i pq p q i q pq p q p p q q p .  (11) 

As we see, πpq qp  because of the presence of the vector product Ÿq p  which is 

anti-commutative. Nevertheless, the product (1) is associative. 
 

We define conjugate q  of q , modulus of q , | |q   and inverse of 1
,

-

q q  as 

 = +
o

q q iq   (12) 

 2| | | |= + = =
o

q q qq qqq   (13) 

 1 2| |- -

=q q q
 ; (14) 

the reader is invited to verify that q  is an involution, i.e. =q q , | |q  is a non-
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negative number and | | 0>q  if 0πq , 1-
q  is both left and right inverse, i.e. 

1 1
1

- -

= =q q qq . 
 
Other properties of the product (11), useful in the present context and easily veri-

fied are 

 ¬ =¬q q   (15) 

 ¬ =¬pq qp   (16) 

 =qp p q   (17) 

The following exercise of differentiation will also be useful. 

 
( ) ( )

2 ( )

= + = + =

= ¬

d qq dqq qdq qdq qdq

qdq
  (18) 

Finally, we note that if the differential form ( )¬ qdq  is zero "dq , then 

 0   ,  0+ ◊ = " fi =
o o
p dq d dq d pp q q  .  (19) 

Now we notice that the following “projection” relations hold 

 
3

{ ; }

{ ; } ,

q p R

Imq q R

ℜ ∈ ≡⎧
⎨

= ∈ ≡⎩ q

Η

Η
 (20) 

which can be seen as vector subspaces of 4
R . Moreover, we introduce the follow-

ing quaternion transformation 

 =s qrq   (21) 

and observe that if 3
Œr R  (i.e. r  is pure imaginary =r ir ), then s  is imaginary 

too. In fact 

 ( ) 0+ = + = + - =s s qrq qrq qrq q r q , 

because for every imaginary r  we have = -r r . 
 
Moreover, we can compute 

 

2 2

2 2 4 2

| | ( )( ) | |

 | | | |  | | | | ;

= = = =

= =

s ss qrq qrq qr q rq

q q r q q r

 (22) 

it follows that if we choose q on the unit sphere in 4
R , namely 

 2 2 2| | | | 1= + =
o

q q q  (23) 

then | s |2 = | r |2. A transformation of this kind can only be a product of a rotation 

by a reflection of one or more axes; the reflection of two axes, say x  and y , is in 

fact a rotation of π  around z , so (21) can only be a rotation by a reflection of one 



 

Helmert’s Transform by Quaternions. A Revisitation 41 

 

or three axes. We want to prove that in fact (21) is a proper rotation and even more 

that every rotation can be presented in the form (21). The representation is not ex-

actly one to one because q  and -q  represents the same transformation (21). So we 

show that in fact when q  spans the unit sphere in 4
R , the transformation (21) cov-

ers twice the subgroup of proper rotations in the unitary group. To prove the above 

statement we will use a particular representation valid for all rotations in 3D.  
 
We start observing that every rotation is in fact a rotation around an axis, identified 

by a unit vector u  (see [6]). Let α  be the angle of the rotation around u ; looking 

at Fig. 1 one recognizes that the component ( )◊r u u  is invariant; on the contrary, 

the component 
0

( )- ◊ =r r u u r  is rotated by α  in the plane orthogonal to u , till it 

reaches 
0
¢r . 

 
(r�u)u

u∧r0

r′0

r0

u

r

α

 

Figure 1: The geometry of the rotation of  r  around  u  by an angle α. 

 
 
We note that, since u  has modulus 1 and is orthogonal to 

0
r , one has 

 
0 0

| |  | |  | |Ÿ = =¢
o

u r r r  .  (24) 

So one has 

 
0 0 0

cos sin= + Ÿ¢ α αr r u r  .  (25) 

We observe as well that 

 [ ( ) ]Ÿ = Ÿ - ◊ = Ÿ
o

νu r u r u u u r  .  (26) 

Therefore one obtains 

 0
( ) ( ) cos sin

cos (1 cos )( ) sin .

= ◊ + = ◊ + + Ÿ =¢

= + - ◊ + Ÿ

o
U α α

α α α

r r u u r r u u r u r

r r u u u r

 (27) 

The relation (27) is a general representation of a 3D rotation. We can observe that 

also (27) is not unique, since the transformation ( , ) ( , )Æ - -α αu u  produces the 
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same rotation. 
 
In any way, we can return to (21) and perform the triple product, applying the rule 

(11). After some algebra, one obtains 

 2 2
[( | | ) 2( ) 2 ]= - + ◊ + Ÿ

o o
qrq i q q qr r q q q r  .  (28) 

Now, recalling (23), we see that we can put 

 
cos

sin

=Ï
Ì =Ó

o
q ϑ

ϑq v
 (29) 

with v  a unit vector, directed as q  and a suitable ϑ . 
 
With the above position, (21) becomes 

 2 2 2
[(cos sin ) 2sin ( ) 2sin cos ]= - + ◊ + Ÿqrq i ϑ ϑ ϑ ϑ ϑr r v v v r .  (30) 

Since 

 2 2
cos sin cos2- =ϑ ϑ ϑ ,  2

2sin 1 cos2= - ϑ ,  2sin cos sin2=ϑ ϑ ϑ . 

(30) can be written as well 

 [cos2 r (1 cos2 ) ( ) sin2 ]= + - ◊ + Ÿqrq i ϑ ϑ ϑr v v q r .  (31) 

A comparison between (27) and (31) shows that by choosing 

  ,  
2

= =

α

ϑ v u  (32) 

we can reproduce any proper 3D rotation, i.e. the operation (21), 3 3
ÆR R , is a 

representation of the group of proper rotations. Even more, since it is clear that in 

(27) ( , )αu  can always be chosen in a way that 0£ £α π , the corresponding qua-

ternion constructed with the rules (29) and (32), will have a real part 

 cos 0
2

= ≥
o

α

w

 
; 

in this way we wipe away the ambiguity between the choice q , -q  to represent 

the same rotation. 

 

 

3. The l. s. estimate of  ( , , )t λ q  

The model of the Helmert transformation by using the identification 3
∫R ImΗ  

and the representation (21) of the rotation is 

 = +s t λqrq   (33) 
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where ( , , )t λ q  are the unknown parameters. The observational model is now  

 
2{ } 0 ,  { } 3

= +ÏÔ
Ì

= ¬ =ÔÓ

oj j j

j j k jk j

s s v

E v Ε v v δ σ
 (34) 

 
2{ } 0 ,  { } 3

= +ÏÔ
Ì

= ¬ =ÔÓ

oj j j

j j k jk j

r r ε

E ε Ε ε ε δ ω
 (35) 

with 

 = +j js t λqr q   (36) 

The factor 3 comes from the fact that 2 2 2 2| |= = + +j j j xj yj zjv v v v v v  and each of the 

components has variance 2

jσ  according to (6); the same holds for 2| |=j j jε ε ε .  
 
Moreover, jv  and 

k
ε  are all independent of one another. 

 
Under the conditions (6), (7), (8) the l. s. principle to estimate ( , , )t λ q  corresponds 

to searching for the minimum of the function 

 

2 2

2 2

1

| | | |
( ,..., ,..., , , )  

=

= +Â
�

j j

j j

j jj

v ε
F r s t λ q

σ ω
 (37) 

with the side conditions (36) and (23). A reduced, but equivalent, approach (see for 

instance [2]) consists of eliminating ,j jr s  by (34), (35) from the unknown parame-

ters, insert them into (33) that becomes 

 - - = - =

oj oj j j j
s t λqr q v λqε q η  .  (38) 

We note that, considering the stochastic model of ,j jv ε , we have that jη  are inde-

pendent for different indexed j and 

 

2

2 2 2 2

{ } { } { }

{ } { }  .

= + =

= + = + =

j j j k j j

j k j j j j j

η η Ε v v λ E qε qqε q

Ε v v λ E ε ε σ λ ω γ

 (39) 

We call 

 1-
=j jw γ    (40) 

and remark that indeed both ,j jγ w  depend on λ . The reduced l. s. principle then 

becomes the search for the minimum of 

 2 2( , , ) | | | |

= =

= = - - +Â Â
� �

j j j oj oj

j i j i

F t λ q w η w s t λqr q αqq   (41) 

where we have introduced the Lagrange multiplier α  to take into account, later, the 
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side condition (23). 
 
Two remarks are in order. 

 

Remark 1. Since one might be willing, at the end of the procedure, to get the esti-

mates of ,j jr s , i.e. of ,j jε v , we notice that from the relation  

 = -j j jη v λqε q , 

the best estimates of ,j jv ε  given jη  are provided by the prediction formulas 

 

2

=�

j

j j
j

σ
v η

γ
 (42) 

 

2

= -�

j

j j
j

ω
ε λ η

γ
 . (43) 

These are in fact the BLUE of ,j jv ε  when jη  are ”observed” and λ  is known (see 

[2]). So a straightforward estimate of ,j jv ε  can be obtained from the l. s. esti-

mates ˆ ˆ,λ η . 

 

Indeed (42), (43), considered as functions of jη  and λ  are non-linear and then sub-

stituting the l.s. estimators might not be optimal. Yet it is reasonable specially con-

sidering that ,� �

j jv ε  are linear functions of jη  and for ˆλ  the following Remark 2 

holds. 

 

Remark 2. We notice that ( , , )F t λ q  depends on λ  through both, the residuals jη , 

and the weights 2 2 2 1( )-= +j j jw σ λ ω . 

However, we know that the l. s. estimator has a weak dependence on the weights. 

Therefore the use of a reasonable estimate of λ  in ( )jw λ  is not significantly af-

fecting the result. On the other hand, also our knowledge of 2

jσ  and 2

jω  is typically 

not very precise. Since a good estimator of λ  can be derived, in any event, from the 

relation 

 | | | |- = -j s j rs b λ r b   (44) 

 

1 1

1 1
,   

= =

= =Â Â
� �

s j r j

j j

b s b r
� �

  (45) 

Suggesting 

 

1

| |1

| |
=

-

=

-

Â
�

oj so

s
oj roj

s b
b

� r b
 ,  (46) 
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we shall assume that λ  in ( )jw λ  is known, i.e. jw  themselves are known numbers. 

This produces a tremendous simplification of the analytic treatment, so we will ac-

cept the above hypothesis. Let us observe that, since we are going in any way to 

obtain a further estimator ˆλ  from the l. s. procedure, an obvious iteration process 

can be established. A fast convergence should be achieved in view of the above 

reasoning. 

 

Given the two Remarks, we can pass to the minimization of (41), where jw  are 

taken as fixed numbers. 
 
We start minimizing (41) with respect to t ; one has 

 ( ) 2 ( ) 0= = ¬ - =Â Âj j j j jdF d w η η w η dt , (47) 

implying 

 ( )= - -Â Â Â Âj j j oj j j ojw η w s w t λq w r q  (48) 

Introducing the weighted barycentres 

 

Ï
Ô =
Ô
Ì
Ô =Ô
Ó

Â
Â
Â
Â

j oj

so

j

j oj

ro

j

w s
b

w

w r
b

w

  , (49) 

(48) gives 

 = -

w w

so ro
t b λqb q . (50) 

It is convenient now to introduce (50) into the observation equations, so that calling 

 ,  = - = -

oj
oj oj so oj ro

δs s b δr r b  (51) 

one can write 

 = -

oj
j ojη δs λqδr q .  (52) 

In this way (41) is reduced to a function of  ,λ q  only, namely 

 2

1

| |

=

= - +Â
oj oj

�

j

j

F w δs λqδr q αqq .  (53) 

It is somehow clever to develop the modulus square in (53), to arrive at 

 2 2 2| | | | 2= + + ¬ +Â Â Â
oj oj oj oj

o j j

j

F w δs λ w δr λ w δs qδr q αqq .  (54) 
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To obtain (54), the relation (15), (16) have been used, together with the fact that for 

every imaginary quaternion v one has = -v v . 
 
The minimization of F  with respect to λ  is now elementary and given by  

 
1

2

1
| |

=

=

¬

=
Â

Â

�

j oj ojj

�

j ojj

w δs qδr q
λ

w δr
 (55) 

Now we go for the minimization of (56) with respect to q. We have, after some 

algebra, 

 
2 2 ( )

[(4 2 ) ] 0

= ¬ + ¬ + + =

=¬ + =

Â Â

Â
oj oj oj oj

oj oj

j j

j

F λ w δs dqδr q λ w δs qδr q α dqq qdq

λ w δs qδr αq δq
 

namely 

 
2

= -Â
oj oj

j

α
w δs qδr q

λ
 . (56) 

The equation (56) hides in fact an eigenvalue equation for a 4 4¥  matrix A . In 

order to get the explicit expression of A  one can, recalling that ,j jδs δr  are pure 

imaginary, exploit the product 

 
( )

{( ) [ ( ) ( )] ( ) }

= - ◊ + Ÿ +

+ Ÿ - ◊ + ◊ + ◊

o

o

δsqδr δ δ q δ δ

i δ δ q δ δ δ δ δ δ

s r s r q

s r r s q s r q s r q

  (57) 

Introducing (57) into (56) and equating real and imaginary parts one gets the 

wanted system of 4 equations into the 4 components of q . 
 
The exercise is left to the reader. 
 
The eigenvalue problem has in general 4 eigenvalues 

i
Λ  and 4 eigenvectors 

i
q ; 

since the modulus of the eigenvectors is not fixed, we can always satisfy condition 

(23) by choosing the eigenvector with unitary modulus. 
 
The choice of the right q  among the 4 is easily accomplished if we note that, given 

q  we can reckon the target function by (53). The eigenvector that minimizes F  is 

the right one. 
 
Even more, since from (56) with / 2= -Λ α λ  known and q  the sought quaternion, 

we derive  

 
1=

¬ =Â
�

j oj ojj
w δs qδr q Λ  

we find that (55) can be substituted by the simpler equation 
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2

1
| |

=

=

Â
�

j ojj

Λ
λ

w δr

 (58) 

 

Remark 3. As we have already noticed, from (55) we get a new estimate of λ . One 

can then check whether it agrees with the prior λ  given by (47). Would this not 

happen in a satisfactory way, one could recompute jw  and iterate. 

 

 

4. Discussion 

The result of §3, is that the problem of finding the S-transformation between two 

reference frames, in which a set of points has observed coordinates, can be treated 

by the quaternion approach if the simple stochastic structure (34), (35) can be hy-

pothesized. This permits to handle different accuracies of coordinates of the vari-

ous points, but not a correlation between points, nor between the coordinates of the 

same point. The author has tried various generalizations without success. There 

seems to be a tradeoff between the complexity of the stochastic structure and the 

complexity of the corresponding quaternion representation. Despite the above limi-

tations, the author believes that being capable of producing a solution without any 

prior information on the rotation, the present quaternion algorithm is interesting, if 

not for any other reason because it is capable of producing a solution once we ac-

cept to simplify the stochastic model so as to became compliant with (34), (35). As 

a further proof of the above statement, let us assume that the stochastic model of 

,
oj oj
s r  is simplified in a way that 

 2 2 2 2 2 2{| | } ,  {| | }= = = =j j j jE v σ σ E ε ω ω  (59) 

i.e. 2 2
,j jσ ω   do not depend on the point index j . Then we have 

 2 2 2( )= = +jw w λ σ λ ω  (60) 

independent of j , and the target function (41) becomes 

 2

1

( ) | |

=

= - - +Â
�

oj oj

j

F w λ s t λqr q αqq .  (61) 

The minimization with respect to t proceeds as before, giving 

 = -
so ro

t b λqb q  (62) 

where now (take =jw w  in (49)) 
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1 1

1 1
,  

= =

= =Â Â
� �

so oj ro oj

j j

b s b r
� �

 . (63) 

So we can define 

 ,  = - = -
oj oj so oj oj ro

δs s b δr r b   (64) 

and returning to (61) we get 

 

2

1

2 2 2

1 1 1

( ) | |

( )[ | | | | 2 ]  .

=

= = =

= - + =

= + + ¬ +

Â

Â Â Â

�

oj oj

j

� � �

oj oj oj oj

j j j

F w λ δs λqr q αqq

w λ δs λ δr λ δs qδr q αqq

 (65) 

The variation of (65) with respect to q  gives 

 

1

2 ( )

=

+Â
�

oj oj

j

λw λ δs qδr αq ,  (66) 

which is basically the same eigenvalue equation as (56), but with constant weights. 
 
Namely we can write 

 

1=

=Â
�

oj oj

j

δs qδr Λq  ,  (67) 

giving 4 λ ’s and 4 q ’s. In particular, for each of the 4 q ’s we have the relation 

 

1=

¬ =Â
�

oj oj

j

δs qδr q Λ  

so that for each solution ( , )Λ q , (65) becomes 

 2 2 2

1 1

( )[ | | | | 2 ]

= =

= + + +Â Â
� �

oj oj

j j

F w λ δs λ δr λΛ α .  (68) 

We can now minimize (68) with respect to λ . We leave the algebra to the reader 

and report the result obtained, after some simplifications, 

 2 2 2 2 2 2 2

1 1

( | | | | ) 0

= =

+ + - =Â Â
� �

oj oj

j j

ω Λλ ω δs σ δr λ λ σ Λ  .  (69) 

As we see, equation (69) has always one positive and one negative root; indeed the 
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positive root is the only interesting to us. So from (67) and (69) we have 4 solu-

tions ( , , )q Λ λ  that used in (68) will tell us which one is the good. As we see there-

fore, a simplification of the stochastic model leads to a completely manageable 

problem. 
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