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Abstract: The principle of unbiased estimation plays a prominent role in our geodetic data 

analytic toolbox. We do our best to free the models from any biases that otherwise may 

corrupt our results and we work with unbiased estimators with the aim that the unbiased-

ness remains intact in the computed output as well. In this contribution we will show how-

ever that the combination of unbiased estimation and statistical testing produces biased so-

lutions. 
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1 Introduction 

The principle of unbiased estimation plays a prominent role in the theory of statis-

tical inference (Dermanis, 1976, 1980, 1990; Dermanis and Rummel, 2000; Te-

unissen, 2000a). Popular estimators are linear least-squares estimators, linear unbi-

ased estimators and best linear unbiased estimators. These estimators deliver unbi-

ased results provided their input is unbiased as well. Statistical testing is then often 

used to validate the data with the aim to remove any biases that may be present. 

The consequence of this practice is that the resulting procedure is not one of esti-

mation only, nor one of testing only, but actually one where estimation and testing 

are combined. We show that the nonlinearity created by this combination of esti-

mation and testing causes the final results to be still biased. Thus as the unbiased-

ness property of the applied 'unbiased estimators' is undone, one may also question 

whether or not other estimators exist or can be constructed that do a better job in 

dampening the bias propagation through the combined estimation + testing proce-

dure. 

 

 

2 Estimation and Testing 

2.1 Estimation under 
o

H  and 
a

H  

Consider the linear model 
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 :  ( )  ,   ( )= =
o yy

H E y Ax D y Q  (1) 

with (.)E  the expectation operator, Œ�
m

y  the normally distributed random vector 

of observables, ¥
Œ�

m n

A  the given design matrix of rank n, Œ�
n

x  the to-be-

estimated unknown parameter vector, (.)D  the dispersion operator and 
¥

Œ�
m m

yy
Q  the given positive-definite variance matrix of y . The linear model (1) 

will be referred to as our null-hypothesis 
o

H . 
 
Under 

o
H , the best linear unbiased estimator (BLUE) of x  is given as 

 ˆ

+
=

o
x A y   (2) 

with least-squares (LS) inverse 1

ˆ ˆ

+ -
=

o o

T
x x yyA Q A Q , in which 

ˆ ˆ

ˆ( )= =

o o
x x o

Q D x  
1 1( )- -T

yyA Q A  is the dispersion or variance matrix of ˆ
o
x . 

 
As the BLUE's property of 

o
x  depends on the validity of 

o
H , it is important that 

one has sufficient confidence in the assumptions underlying the null-hypothesis. 

Although every part of the null-hypothesis can be wrong of course, we assume here 

that if a mis-specification occurred that it is confined to an underparametrization of 

the mean of y , in which case 

 : ( ) = +
a

H E y Ax Cb  ,  ( ) =
yy

D y Q   (3) 

for some vector =
y

b Cb . Experience has shown that these type of mis-

specifications are by large the most common errors that occur when formulating 

the model. Through =
y

b Cb  one may model, for instance, the presence of one or 

more blunders (outliers) in the data, cycle-slips in phase data, satellite failures, an-

tenna-height errors, erroneous neglectance of atmospheric delays, or any other sys-

tematic effect that one failed to take into account under 
a

H . In the following we 

assume matrix ( )
[ ]

¥ +
Œ�

m n q

AC to be known of rank +n q  and the parameter vec-

tor Œ�
q

b  to be unknown. The linear model (3) will be referred to as the alterna-

tive-hypothesis 
a

H . 
 
Under 

a
H , the BLUE of x  is given as 

 ˆ

+
=

a
x A y   (4) 

with LS-inverse 

 1 1 1( )+ - - -
=

T T
yy yyA A Q A A Q ,  + ^

=
C

A P A ,  1 1 1( )^ - - -
= -

T T
C m yy yyP I C C Q C C Q .  

As this BLUE is based on a model with more parameters, its precision will never 

be better than that of ˆ
o
x , i.e. ˆ ˆ( ) ( )£

o a
D x D x . 

 

2.2 Testing of 
o

H  against 
a

H  

The estimation of x  would not pose a problem if we would know which of the two 
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models would be true. In case of 
o

H , we would use ˆ
o
x  to estimate x , but if we 

would know that 
a

H  is true then we would use ˆ
a
x  instead. Using the estimator ˆ

o
x  

when knowing that 
a

H  is true should be avoided, as this would result in a biased 

solution, since 

 ˆ( ) +
= +

o a
E x H x A Cb   (5) 

The problem in practice of course is that we do not know which of the models are 

true. Even if we have taken the utmost care in formulating a model which we be-

lieve to be true, mis-specifications could still be present thus invalidating the 

model. Methods of statistical testing have therefore been developed (Baarda, 1967, 

1968; Koch, 1999; Teunissen, 2000b; Imparato, 2016) that allow us to decide with 

some confidence which of the models to work with. In case of the above 
o

H  and 

a
H , it seems reasonable to decide in favour of 

o
H  if the BLUE of b  can be con-

sidered 'insignificant'. With the BLUE of b  under 
a

H  given as 

 ˆ
+

=b C y   (6) 

with LS-inverse  1 1 1( )+ - - -
=

T T
yy yyC C Q C C Q , ^

=
A

C P C  and variance matrix 
1 1

ˆ ˆ ( )- -

=

T
yybb

Q C Q C , the decision in favour of 
o

H  is therefore taken when ˆb  lies in 

the acceptance region A , 

 { }
ˆ ˆ

2 2ˆ || || ( ,0)Œ = Œ £�
bb

q
Q ab b b χ qA   (7) 

with 
ˆ ˆ

2 1

ˆ ˆ|| . || (.) (.)-

=

bb

T
Q bb

Q  and 2 ( ,0)
a
χ q  the critical value computed from the central 

Chi-square distribution with q  degrees of freedom and chosen level of signifi-

canceα . Thus 
o

H  is rejected in favour of 
a

H  if 

 
ˆ ˆ

2 1 2

ˆ ˆ
ˆ ˆ ˆ|| || ( ,0)-

= >

bb

T
Q abb

b b Q b χ q  (8) 

This test is known to be a uniformly most powerful invariant (UMPI) test for test-

ing 
o

H  against 
a

H  (Arnold, 1981; Teunissen, 2000b). 
 
If the outcome of testing is to reject 

o
H , then not ˆ

o
x , but ˆ

a
x  is provided as the 

estimator for x . The three estimators, ˆ
o
x  (cf. 2), ˆ

a
x  (cf. 4) and ˆb  (cf. 6) are re-

lated as 

 ˆ

ˆ ˆ

+
= -

a o
x x A Cb  (9) 

Thus if 
o

H  is rejected, then ˆ
+

A Cb  is the correction, which is aimed at removing 

the bias +
A Cb  (cf. 5) from ˆ

o
x . 
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3 Does The Bias Get Removed? 

3.1 The Estimator Revisited 

Although estimation and testing are often treated separatedly and independently, in 

actual practice they are usually combined. This implies that strictly speaking one 

cannot simply assign the properties of ˆ
o
x  or ˆ

a
x  to the actual estimator that is com-

puted. That is, the actual estimator that is produced is not ˆ
o
x  nor ˆ

a
x , but in fact 

 
ˆˆ   

ˆˆ   

Ï ŒÔ
= Ì

œÔÓ

o

a

x if b

x

x if b

A

A
  (10) 

Hence, it is the quality of x , rather than that of ˆ
o
x  or ˆ

a
x , that determines the qual-

ity of the produced results. Since ideally the goal of testing is to be able to have the 

bias +
A Cb  removed from ˆ

o
x  when 

a
H  is true (cf. 5), it is relevant to know what 

the mean of the actual estimator x  is. By making use of the relation 
ˆ

ˆ ˆ

+
= -

a o
x x A Cb , the expectation of x  can be determined as  

 
ˆ

ˆ

( | ) ( | )

( | ) ( | )

o ob

a ab

E x H x A C βp β H dβ

E x H x A C βp β H dβ

+

∉

+

∈

= − ∫

= + ∫

A

A

 (11) 

with 
ˆ

( | )
ob

p β H  and 
ˆ

( | )
ab

p β H  being the probability density function (PDF) of b  

under resp. 
o

H  and 
a

H . 
 
The result (11) shows that the estimator x  is biased in general, this in contrast to 

ˆ

o
x  under 

o
H  and ˆ

a
x  under 

a
H . The conclusion reads therefore that testing does 

not succeed in removing (all) the bias from the contaminated data. The cause for 

the presence of these remaining biases is the nonlinearity involved in the mapping 

of (10). Thus although ˆ
o
x  and ˆ

a
x  are both individually linear functions of y , the 

actually produced estimator x  is not. It is this nonlinearity that prohibits the unbi-

asedness of ˆ
o
x  and ˆ

a
x , under resp. 

o
H  and 

a
H , to be passed on to x . 

 

Table 1. The mean of the random parameters vectors ˆ
o
x , ˆ

a
x  and x , under 

o
H  

and 
a

H  respectively. 

 
o

H  
a

H  

o
x  ˆ( | ) =

o o
E x H x  

ˆ

ˆ( | ) = +

o
o a x

E x H x b  

a
x  ˆ( | ) =

a o
E x H x  ˆ( | ) =

a a
E x H x  

x  ( | ) =
o

E x H x  ( | ) = +
a x

E x H x b  

 

Although (11) indicates that x  is generally biased under both 
o

H  and 
a

H , we 
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have in our case 
ˆ

( | ) 0
œ

=Ú ob
βp β H dβ

A

, due to the symmetry with respect to the 

origin of both the acceptance region A  and the PDF 
ˆ

( | )
ob

p β H . Hence, in our 

case, the estimator x  is fortunately always unbiased under 
o

H , 

 ( | ) =
o

E x H x  (12) 

This is not true however for x  under 
a

H . We have 

 ( | ) = +
a x

E x H x b  (13) 

with the bias given as 

 +
=

x
b A CbA    with  ˆ

( | )
Œ

= Ú ab
b βp β H dβA

A
 (14) 

This shows that the bias in x  is driven by the vector bA  and its propagation into 

the parameter space. The vector bA  itself is governed by the acceptance region A  

and through the PDF 
ˆ

( | )
ab

p β H , by the actual bias b  and the precision with which 

it can be estimated, 
ˆ ˆbb

Q . To see the effect testing has, one can compare the testing-

induced bias (14), with the bias one otherwise would have when using ˆ
o
x  under 

a
H  (cf. 5),  

 
ˆ

ˆ( | ) +
= - =

o
x o a
b E x x H A Cb

 
(15) 

It follows from comparing (14) with (15), since ˆ( | )= =
a

b E b H
ˆ

( | )Ú
�

q ab
βp β H dβ , 

that through testing it is the component of this integral over the acceptance region 

A  that is retained. We thus have 
ˆ

=

o
x x
b b  if =�

q
A , which corresponds to the 

case of always accepting 
o

H . A summary overview of the means of the random 

vectors ˆ
o
x , ˆ

a
x  and x  is given in Table 1. 

 

3.2 When is the bias small and large? 

As mentioned above the testing induced-bias 
x
b  is driven by bA  and its propaga-

tion into the parameter space. To describe its significance, we will work with the 

dimensionless bias-to-noise ratio (BNR) 
ˆ ˆ

|| ||
x x
o o

x Q
b  and study its behaviour for the 

one-dimensional case. If 1=q  then matrix C  becomes a vector, =C c , and b  be-

comes a scalar. For this case the BNR works out as 

 
ˆ ˆ

ˆ

tan=

x x
o o

x Q
b

b
b θ

σ

A
 (16) 

with θ  being the angle that vector c  makes with the range space of the orthogonal 
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complement of A , i.e. tan || || / || |
^

=

yy yy
Α Q Α Q

θ P c P c (Teunissen, 2000b), p.111. Here 
+

=
A

P AA  and ^ +
= -

A m
P I AA . In the decomposition (16), 

ˆ

/
b

b σA  describes the 

significance of bA , while tanθ  shows how it gets propagated into the parameter 

space. 
 
There are two cases for which bA  will be 'small'. It will be small when the PDF 

ˆ

( | )
ab

p β H  has only a small portion of its probability mass over A , and it will be 

small when it differs only a little from the PDF under 
o

H . To quantify this behav-

iour, we make use of the one-dimensional integral 

 
ˆ

ˆ

2
(1,0)

(1,0) ˆˆ

1 1
exp{ }

22 -

Ê ˆ-
= - Á ˜

Ë ¯
Ú

a b

a b

χ σ

χ σ
bb

β b
b β dβ

σπσ
A   (17) 

from which it can be worked out that 

 
ˆ

( (1,0)) ( (1,0))= - -a a

b

b
F χ F χ

σ

A
 (18) 

in which  
ˆ ˆ ˆ

( )
Ê ˆ Ê ˆ

= + + +Á ˜ Á ˜
Ë ¯ Ë ¯b b b

b b b
F x x Φ x

σ σ σ
φ   with  21 1

( ) exp{ }
22

= -x x

π

φ  

and ( ) ( ) ( )
-•

= Ú
x

Φ x υ d υφ . 

 

 

Fig. 1. The output bias 
ˆ

/
b

b σA   as function of the input bias 
ˆ

/
b

b σ  for different values of 

α  (after Teunissen et al (2016)). 

 

Figure 1 shows 
ˆ

/
b

b σA  as a function of 
ˆ

/
b

b σ  for different values of α . The 

straight line in the figure describes the bias one would have in case no testing 

would be performed. As £b bA  for every value of b , the figure clearly shows the 

benefit of testing: the bias that remains after testing is always smaller than the 

original bias. Note that this benefit, i.e. the difference between b  and bA , only 
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kicks in after the bias b  has become large enough. The difference is small, when b  

is small, and it gets larger for larger b , with bA  approaching zero in the limit. Also 

note that for smaller levels of significance α , the difference between b  and bA  

stays small for a larger range of b -values. This is understandable as a smaller cor-

responds with a larger acceptance interval A , as a consequence of which one 

would have for a larger range of b -values an outcome of testing that does not dif-

fer from the no-testing scenario. 

 

 

4 Summary 

Although statistical testing is intended to remove biases from the data, we have 

shown that biases will always remain under the alternative hypothesis. The usage 

of estimators that are unbiased under their respective hypotheses is therefore no 

guarantee that the finally computed solution is unbiased as well. We have shown 

that the presence of such biases in the final solution can be explained by the 

nonlinearity created by the combination of estimation and testing. The size of these 

remaining biases depends on the strength of the underlying model, the chosen false 

alarm rate, and the size and type of the actual input bias. The size of the remaining 

bias will get smaller with increasing model strength and larger levels of signifi-

cance. Despite the presence of these biases, the benefit of testing was demonstrated 

by showing that the remaining bias is always smaller than the bias one otherwise 

would have in the absence of testing. 
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