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Summary: Some remarks on least squares adjustment topics are presented, often bypassed 

or given little attention. The minimum number of observable parameters, the relation be-

tween observables and other unknown parameters, the role of the functional model and the 

linearization effect are fundamental to build a correct adjustment model. Discussing simple 

worked examples from the fields of geodesy and surveying, with extensions to practical 

applications, a closer look is gained. Especially, a better understanding of the least squares 

principal concepts could be very helpful for students, young scientists and non-experts in-

volved in problems requiring adjustment of observations. 
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1. Building the concept of the Least Squares adjustment model 

A Least Squares (LS) adjustment problem includes observable parameters (true 

/unknown values), observations (arithmetic values), observational errors (true 

/unknown values) and often some other unknown parameters (true/unknown val-

ues). The relation between observables and/or unknown parameters form the func-

tional adjustment model, expressed by non-linear equations in the general case. 

Moreover, the behavior of the errors and the observations is described by the same 

stochastic model.  
 
The goal of the adjustment is the estimation of unknown parameters, given a set of 

observations or measurements, satisfying the minimization of squared errors. The 

concept of observation is the same with that of measurement, so they are inter-

changeably used throughout the paper. Applying an adjustment algorithm/method, 

the estimates of parameters and observables – adjusted/corrected values - satisfy 

also the functional (compatibility). In addition, the estimated observational errors, 

frequently called residuals, are the key to assess the adjustment results in a second 

necessary step. Without error control, nothing can be stated for the quality of the 

results. Since the number of observations is always greater than the minimum 
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needed for a solution, there can be more solutions by means of properly selected 

subsets of observations. To derive a unique solution and take advantage of all 

available observations simultaneously, a convenient criterion must be adopted. 

This solution should be preferably best in terms of quality/accuracy (precision and 

reliability) and possibly with a minimum cost.  
 
Among various minimization/optimization criterions, the well-known LS criterion 

is one that has been proved efficient for best estimates since the early years of 

1800s, the era of Legendre, Gauss and other famous scientists afterwards. As the 

magnitude of errors is the key for the quality control, its influence in the adjust-

ment results should be investigated (design/optimization problems).  
 
The LS criterion can be applied either in a simple form, where all errors equally 

effect the solution or in an extended form when the contribution of each error is 

counted regarding its importance, something that is called weight. Large weights 

lead generally to smaller error estimates or smaller weights tent to produce larger 

errors. This fact can be realized in the functional expression of the LS criterion 

with weights, where in the minimization process the weights act as zoom in or 

zoom out scale factors. In the most general case it is possible to count also for the 

interrelation of weights. The concept of a weight is proportionally related to the 

precision of the corresponding measurement or inversely proportional to its uncer-

tainty; larger weights are associated with more precise measurements. Therefore, a 

relation is established between weight and precision. 
 
Considering observational errors as being just small quantities that tend to cancel 

out as the number of observations increases more and more, applying the LS crite-

rion a solution is achieved. This is the case of a deterministic adjustment model. 

Assigning proper weighs or generally a proper weight matrix demands for a sto-

chastic error model. Under this requirement, errors are considered as random or 

stochastic variables, meaning that they are sample values of random variables that 

take different values when the observations are repeated under similar conditions. 

The same stochastic model holds also for the observations. In theory, an infinite 

number of repeated observations may be described by a common probability den-

sity function, from where the expectation and the covariance matrix of random er-

rors can be determined. Even if it is not necessary the knowledge of the density 

function, it is possible to express the stochastic model by the expectation of random 

errors equal to zero and a covariance matrix that is determined and considered ab-

solutely or a priori known. So far, the LS mathematical adjustment model or sim-

ply the adjustment model (functional + stochastic) has been built, allowing for un-

biased estimations, i.e., those having mean values equal to their real ones for the 

infinite sample. The application of the law of covariance propagation, also known 

as the law of error propagation, provides the estimation of covariance matrices for 

any estimated parameter. 
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The elements of the error/observation covariance matrix are measures of precision. 

A weight matrix should be then preferably determined so that the estimated pa-

rameter have maximum precision, i.e., minimum variances. A more general crite-

rion for unbiased estimations is expressed by the minimization of the variances of 

the estimated parameters. For mathematical simplicity, a compromise is made and 

linear estimations instead of non-linear are used. On the other hand, LS linear esti-

mates are identical to the minimum - variance linear estimates in case the weight 

matrix is equal to the inverse of the error covariance matrix. This is the best possi-

ble choice for the weight matrix resulting in LS estimates characterized by maxi-

mum precision. Nonlinear LS estimates are identical to nonlinear estimates that 

have minimum - variance only if random errors follow the Normal (Gauss) distri-

bution. Under the same stochastic behavior, LS linear estimates are also identical to 

the ones derived by the method of Maximum Likelihood Estimation. In conclusion, 

the LS adjustment of observations leads to Best Linear Unbiased Estimations 

(BLUE). 

 

The final step of the adjustment is the assessment of the results where estimated 

covariance matrices are used together with error and other estimates. This is usu-

ally made through a statistical evaluation or reliability control. In this step, the dis-

tribution of errors must be known. Among various choices the Normal/Gauss dis-

tribution has been accepted for it is both a realistic and mathematically simple hy-

pothesis. First, the reliability of the results is examined by hypothesis testing, veri-

fying the validity of the a priori stated model hypotheses (null hypotheses). Usu-

ally, we try to detect and localize possible significant model errors, looking mainly 

in the estimated size in relation to their intercorrelation as given by the estimated 

covariance matrix. Ending with an acceptable set of observations and a realistic 

covariance matrix, in association with an efficient functional model, measures of 

marginal detectable errors or marginal effects on the estimated parameters can be 

also derived (reliability measures). At this point, computed measures of precision 

or uncertainty are also measures of accuracy/quality, like confidence intervals, ar-

eas, spaces. The assessment process could be carried out in a pre-analysis step, be-

fore the measurement campaign, in a trial and error optimization under certain 

standards and specification criteria set a priori (design criteria, optimization prob-

lems). 
 
The accuracy or quality of an estimated parameter express the degree of closeness 

to its real (unknown) value; therefore, accuracy is always unknown. Moreover, the 

precision of an observation or an estimated parameter express the degree of close-

ness between repeated observations or estimated parameters. Precision of a pa-

rameter is given usually by the variance or standard deviation, also called r.m.s.e 

(root mean square error) for unbiased estimations. In case the observations are free 

of systematic errors (biases) and outliers (gross errors), measures of precision are 
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also measures of accuracy as errors are influenced only by the (unavoidable) ran-

dom errors. Pre-processing and post-adjustment tests - usually statistical tests- refer 

to the reliability control.  
 
Some authors characterize outliers as mistakes and define errors as being only ran-

dom and systematic; obviously, mistakes have large values and normally could 

easily be detected and excluded. We should note that random errors may have any 

large value as illustrated by the normal distribution, though this is exceptionally not 

likely for a correct model. A more appropriate term for all types of errors might be 

the term model errors; the division to three or two categories supports mainly 

teaching requirements and an ease understanding with respect to their sources. 

Generally, it is difficult to distinguish the specific type of an estimated error, espe-

cially in models with many interrelated variables and parameters, for instance in 

the adjustment of geodetic and surveying networks, where a weak configuration in 

relation to the associated weights affects seriously error estimates, making thus dif-

ficult or even impossible a correct error localization. 
 
Despite any statistical evaluation, there is not a hundred percent guaranty that all 

possible existed errors have been removed. Based on a statistical decision, there is 

always a probability (risk) to reject a correct null hypothesis - committing a type-I 

error - or to accept a wrong one - committing a type-II error. In the present paper, 

we will not deal with statistical assessment of the results. The goal is to discuss and 

make some useful remarks on basic topics, sometimes bypassed or completely 

omitted in literature. The number of the minimum observable parameters needed 

for an adjustment, the relation between the number of observables and other un-

known parameters, the role of the adjustment model and the linearization process 

are hot and essential topics for any adjustment problem. 

 

 

2. Formulating the functional model 

Using matrix notation, a list of symbols for parameters, variables and constants is 

first given:  

• the observable parameters or observables (unknown):  

T

1 2 n
y y y

α α α α⎡ ⎤= ⎣ ⎦y … ,   i = 1, 2, ..., n 
 

• the observations or measurements (arithmetic values):  
T

b b b b

1 2 n
y y y⎡ ⎤= ⎣ ⎦y … ,   i = 1, 2, ..., n 

 
• the errors (unknown):  

[ ]
T

1 2 n
v v v=v … ,   i = 1, 2, ..., n 

• the unknown parameters:  
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T

1 2 m
x x x

α α α α⎡ ⎤= ⎣ ⎦x … ,   i = 1, 2, ..., m 

• the approximate values of the unknown parameters: 

T
o o o o

1 2 m
x x x⎡ ⎤= ⎣ ⎦x … ,   i = 1, 2, ..., m 

• the corrections to the unknown parameters: 

[ ]
To

1 2 m
x x x

α

= − =x x x … ,   i = 1, 2, ..., m 

• the approximate values of the observations: 

T
o o o o o

1 2 n
( ) y y y⎡ ⎤= = ⎣ ⎦y f x … ,   i = 1, 2, ..., n 

The relation between observables, observations and errors is given by the conven-

tional with respect to the sign (+ or –) relation, 

 b α

= +y y v   (2.1) 

With P, the weight matrix and C the variance covariance matrix of errors or 

equally of observations, we usually have two types of stochastic models:  

 
2 1 2 1

, ( )C Q P C Q
− −

= σ = = σ  (
2

σ  known or a priori known and Q known) (2.2) 

 
2 1

,

−

= σ =C Q P Q   (
2

σ  unknown (
2

σ̂  is used) and Q known) (2.3) 

Model (2.2) reflects an absolutely known observation accuracy, that is a theoretical 

case not so realistic as (2.3). On the other hand, the first choice offers much more 

mathematical simplicity in estimating measures of accuracy and reliability and is 

preferred in many software packages. The choice depends on the user’s opinion in 

relation to the specific adjustment problem.  
 
The LS-criterion, the minimization of the quantity φ, is expressed by 

 
2 T

i
v min.ϕ= = =∑ v v ,  P = I  (simple form). (2.4) 

 
2 T

i i 1 2 n
p v min., diag(p ,p ,...,p )ϕ= = = =∑ v Pv P   (extended form) (2.5) 

 
T

φ min.,    full matrix= =v P v P   (general form) (2.6) 

In any LS adjustment problem, there must be a least number of observable parame-

ters that give a solution, i.e., making possible the determination of all unknown 

parameters. We will call this minimum number, the parametric degree r.  
 
The necessary and sufficient condition to characterize a problem as an adjustment 

problem is that the number of observations must be greater than the parametric de-

gree (n > r) and at the same time a proper subset of observations  no  equal to  r  

(no = r) exists. Otherwise, the problem is not properly described, even if n > r, and 
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a solution does not exist. Always in an adjustment problem there are more than one 

proper selections of no and therefore more than one solutions but not the LS-

solution.  
 
The general form of the functional model is, 

 ( , )α α

=u y x 0  (2.7) 

The compatibility between estimates ( ˆ ˆ,
α α

y x ) and the functional model is ex-

pressed by ˆ ˆ( , )α α

=u y x 0 . Understanding that the number m of unknown parame-

ters in (2.7) is (n + m) while r is only required for a solution, there must be a num-

ber s of independent mathematical conditions/equations in the model, 

 s (n m) r (n r) m f m= + − = − + = +  (2.8) 

where  f  is the degrees of freedom representing the redundant observations.  
 
In geodetic adjustment problems, as it is the case of trigonometric, levelling and 

GPS/GNSS network adjustments, r is a constant regardless of the number n of ob-

servations. As the number n, can be as greater as possible, we can only select the 

number m of the unknown parameters with respect to r. This choice determines the 

specific form of the functional model (2.7) and thus the number s of equations, 

something fundamental for the adjustment method that should be followed. 

 

 

3. Basic observation adjustment methods 

All the adjustment methods are equal, meaning that they lead to the same adjust-

ment results regardless the specific method. The choice of one or another method 

depends on the type of the functional model. In the following, we will examine the 

three basic adjustment methods, namely: the method of observation equations (the 

method of parameters or the method of indirect observations), the method of condi-

tion equations (the method of direct observations) and the method of mixed or 

compound equations (the general method), see e.g., see, e.g., Wells and Krakiwsky 

1971, Mikhail and Ackermann 1976, Dermanis 1986/1987, Koch 1987, Dermanis 

and Fotiou 1992, Rossikopoulos 1999, Fotiou 2007, Sneew et al. 2015  

 

3.1 The method of observation equations  

This is the most common adjustment method including unknown parameters α

x  

and having an obvious number of (independent) equations.  
 
The choice m = r, and consequently s = n, makes possible (2.7) expressed by  

 ( )α α

=y f x  (3.1) 
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Noting that each one of the observables is written as a function of only the un-

known parameters (constants may be included); no observable can be present on 

the right side of (3.1). Because it is generally difficult to deal with non-linear sys-

tems and estimations, as a rule in all methods, linearization is adopted. Expanding 

(3.1) in a Taylor series around the approximate point o

x , computed by any suitable 

means - often using a subset of observations - and keeping first order terms, we 

have, 

 o o o b o

o
( ) | ( ) ,α α

α

∂
= + − = + − = +

∂

f
y f x x x y Ax y y Ax v

x
 (3.2) 

 = +b Ax v  (3.3) 

where, the (n x m) matrix A is called the design matrix, having elements the partial 

derivatives computed by means of o

x  and b is the (n x 1) vector of the reduced 

observations noting that o o( )=y f x  is accurately computed.  
 
Having thus (3.3), the linear system of observations, we note that this is also an 

underdetermined system for there are s = n equations with (m + n) > n  unknowns. 

System (3.3) has generally an infinite number of solutions and the question arising 

is which is the best one. Among all solutions, there exists one that satisfies the LS 

criterion, and this is a best solution. Under the LS optimization constraint, and 

without going into proofs, the (m x m) or (r x r) normal equations system is formed,  

 ˆ( )T T
A PA x = A Pb ,   or   ˆ�x =u  (3.4) 

where � is the (symmetric) normal equation matrix and u the (m x 1) constant vec-

tor. From (3.4) we get the LS solution/estimates, 

 
1 1ˆ ( ) ( )− −

= =

T T
x A PA A Pb � u     [det(�≠0)],    ˆ ˆ ˆ

α ο

= +x x x  (3.5) 

 
bˆ ˆ ˆ ˆ ˆ ˆ, or f ( )α α α

− = − =v =b Ax y y v y x  (3.6) 

 

T T T

2 ˆ ˆ ˆ ˆ ˆ ˆ
ˆ

n r n m f
σ = = =

− −

v Pv v Pv v Pv

 (3.7) 

The associated estimates of covariance matrices, are obtained by applying the co-

variance propagation law, i.e., 

 
1

ˆ ˆ
α

−

= =
x

x

C C �   if 1−
=P C , 

2 1

ˆ ˆ

ˆ ˆ

ˆ
α

−

= =σ
x

x

C C �  if 
1−

=P Q  (3.8) 

 
1 1 T

ˆ ˆ
α

− −

= − = −
v y

C P A� A C C  if 1−
=P C , 2

ˆ ˆ
ˆ

ˆ= σ
v v

C C  if 
1−

=P Q  (3.9) 

Any other estimate based on the above best estimates is also a best estimate. 
 

In case of initial linear equations, α α

= +y Ax t  or α

= +b Ax v , where a constant 
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vector t is possibly present. Comparing with (3.3), b
− ≡y t b  and α

≡x x  meaning 

that o

x = 0 (no approximate values are needed), while matrices A, � remain the 

same. The approximate values o

x  should be close enough to their correct esti-

mates, otherwise serious linearization errors will affect the solution. In any case, 

the adjustment must be repeated with approximate values the previous estimates 

until a negligible difference, between consecutive results, e.g. between the un-

known parameter estimates, is achieved.  

 

3.2 The method of condition equations  

In this method, m = 0  and  s = n – r = f.  As we have only observables in the func-

tional model, (2.7) becomes  

 ( )α =g y 0  (3.10) 

having s independent condition equations. Following the linearization, and taken as 

approximate values of observations the values of the observations, something that 

is followed in the classical approach, 

 b b

b
( ) ( ) | ( )α α

α

∂
= + − =

∂

g
g y g y y y 0

y
,    or    =Bv w  (3.11) 

with obvious substitutions. B is the (s x s) matrix of partial derivatives computed 

by means of b
y  and w = b( )g y  the (s x 1) vector of the so-called closing errors.  

 
The linear system (3.10) is again an underdetermined system as there are s = (n –r) 

equations with n > s unknowns. Imposing the LS criterion, the derived best LS so-

lution is given by the (s x s) normal equations system,  

 1 ˆ( )− T
BP B k = w ,  ˆMk = w ,  1

ˆ
−

k =M w ,  1 T 1 T 1
ˆ

ˆ

− − −

=v = P B k P B M w  (3.12) 

where M is the (symmetric) normal matrix (det(M ≠ 0)). The adjusted observa-

tions, and the posteriori variance factor when needed, are given by 

 b
ˆ ˆ

α

= −y y v ,    

T T T

2 ˆ ˆ ˆ ˆ ˆ ˆ
ˆ

n r s f
σ = = =

−

v Pv v Pv v Pv

 (3.13) 

Compatibility between adjusted observations and the functional model is expressed 

by, ˆg( )α

=y 0 ,  ˆ =Bv w . Also, the associated covariance matrices are given by 

 
1 T 1 1 1

ˆ ˆ
α

− − − −

= = −
v y

C P B M BP P C   ( 1−
=P C )   or  2

ˆ ˆ
ˆ

ˆ= σ
v v

C C   (
1−

=P Q ) (3.14) 

We remind that a complete elimination of the unknown parameters from the obser-

vation equations (3.1) results in condition equations (3.10). 
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3.3 The method of mixed equations  

This is the general adjustment method, realizing that it is a method of observation 

equations with respect to the unknown parameters α

x  and simultaneously a 

method of condition equations with respect to the observables.  
 
Here,  s = n + m – r with  0 < m ≤ r and thus n – r < s ≤ n.  We see that there are m 

unknown parameters, generally less than the number of  r  (m < r). In case  m = r, 

the model can be written in the form of the observation equations method but for 

some reason, e.g. due to mathematical complication, the method of mixed equa-

tions may be preferred. Since m < r, some of the parameters α

x  have been elimi-

nated from (3.1); if all of them had been eliminated, then m = 0 and conditions 

(3.10) would be derived. 
 
The mixed model ( , )α α

=u y x 0  is expanded in a Taylor series around the point 
o b( , )x y , as it is followed in the classical approach (discussed later). Keeping first 

order terms, we will have, 

 b o o b
o,b o,b( , ) ( , ) | ( ) | ( )α α α α

α α

∂ ∂
= + − + − =

∂ ∂

u u
u y x u y x x x y y 0

x y
,   or (3.15) 

 + − =w Ax Bv 0  (3.16) 

where, the matrices (s x m) A, (s x n) B and the (s x 1) vector b o( , )=w u y x  are 

evaluated at o b( , )x y  while x  and v  are estimated from the LS algorithm. As pre-

viously, (3.16) expresses an underdetermined system with s mixed equations and 

(m + n) > s  unknowns. The LS solution is given by the normal equation system,  

 1 1ˆ( )− −

−

T T
A M A x = A M w ,   or   ˆ

−�x= u  � 
1

ˆ

−

= −x � u ,  [det(�≠0)] (3.17) 

 ˆ ˆ ˆ

α ο

= +x x x ,   
1 T 1 bˆ ˆ ˆ ˆ( ),− − α

+ = −v = P B M w Ax y y v ,   

T

2 ˆ ˆ
ˆ

s m
σ =

−

v Pv

 (3.18) 

The covariance matrices for the above estimates are then given by 

 
1

ˆ ˆ
α

−

= =
x

x

C C �    if  1−
=P C ,   

2 1

ˆ ˆ

ˆ ˆ

ˆ
α

−

= =σ
x

x

C C �    if   
1−

=P Q  (3.19) 

 
1 T 1 1 T 1 1

ˆ [ ]
− − − − −

= −
v

C P B M I A� A M BP  1( )P C
−

= , 2

ˆ ˆ
ˆ

ˆ= σ
v v

C C  
1( )P Q

−

=  (3.20) 

 

3.4 Constraints on the unknown parameters  

An extension to the above (2.7) and (3.1) models, that both contain unknown pa-

rameters α

x , is to set constraints on all or some of the unknown parameters. This is 

the case when k equations ( )α

=h x 0  must be satisfied. In consequence, the lin-

earized constraints, 
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 o o

o
( ) ( ) | ( )α α

α

∂
= + − = − + =

∂

h
h x h x x x z Hx 0

x

,    or   =Hx z   (3.21) 

must be included, as a new subset of equations, in the corresponding linear sys-

tems. For the related adjustment algorithms not given here, we underline some is-

sues. The number of k-constraints mean that one or more of the m parameters are 

not independent and therefore not fundamental for the description of the problem. 

The independent (m – k) parameters, (m – k) = r < m, if they are known, the rest k 

parameters are determined; thus, we must include k equations in the functional 

model.  
 
In the method of observation equations with constraints, the new total number of 

equations is given by  sˊ= n + m – r = n + k  where  m – r = k  or  m = r + k.  Like-

wise, in the method of mixed equations, the new total number of equations is,  

sˊ= (n + m – r) + k = s + k,  where  m – r ≤ k  or  m ≤ r + k. 
 
Sometimes it is better to eliminate a part or even all the constraints. A simple case 

of constraints that are eliminated, refers to fix a number of point coordinates in a 

geodetic network, in order to define the coordinate system or datum of the adjust-

ment. 

 

 

4. An introductory example 

The role of the parametric degree r is fundamental in any adjustment model. More 

over the selection of the adjustment method and the linearization are important is-

sues. With the help of worked examples we will try to clarify some related issues.  
 
Consider a problem where the shape of a triangle on a horizontal plane must be 

determined. For this purpose, we measured just two angles of the triangle. Obvi-

ously, the third angle is the difference of their sum from 180º. Geometrically, the 

triangle’s shape is determined by taking an arbitrary length of the side with the two 

angles at each end and intersecting the two lines formed by each angle (the third 

vertex is defined). Note that there are two solutions, two intersections at each half-

plane; we choose one of them if there is some knowledge of the relative orienta-

tion. However, it is not possible with two measured angles to have error control; 

any serious error in the observations affects directly the position of the third vertex 

resulting in an erroneous shape. Realizing that the shape is determined by a mini-

mum number of two angles (observables), the parametric degree r = 2. Also, n = 2 

and therefore, the condition n > r for an LS adjustment is not fulfilled. 
 
Let’s modify the design and measure also the third angle, in total the three angles 

B C
( , , )

Α
ω ω ω . Suppose that measurements have known precision given by their 

standard deviations
C

, ,

Α Β
ω ω ω

σ σ σ . While r remains constant (r = 2), regardless the 

increase of observations, we will have, n = 3 > 2. In addition, there is a minimum 



68 A. Fotiou 

 

suitable number of observables, no = r =2 that gives a solution, e.g. any pair of an-

gles determines the shape. Since the necessary and sufficient condition is fulfilled, 

the LS-best shape of the triangle can be estimated. Of course, any empirical solu-

tion can be obtained but this is not a best LS-solution. 
 
In the following, we will present the formulation of the functional LS model in 

each one of the three basic adjustment methods, underling that the ad-

justed/estimated results from any method are the same. 

 

4.1 Using the method of observation equation 

First, we must select m = r = 2 unknown parameters that fully describe the shape of 

the triangle and then formulate the three observation equations. One choice is to 

take any pair of the observables as being also unknown parameters. According to 

this choice, we’ll have, 

 [ ]
T

C

α

Α Β
= ω ω ωy ,   [ ]

Tb

C
' ' '
Α Β

= ω ω ωy ,   
A C

T

v v v
Β

ω ω ω
⎡ ⎤= ⎣ ⎦v   

and the unknown parameters, [ ]
T

A B
z z

α

=x . 

Covariance and the weight matrices of the errors/observations are 

 
C

2 2 2
diag( , , )

Α Β
ω ω ω

= σ σ σC ,   
C

1 2 2 2
diag(1/ ,1 / ,1 / )

Α Β

−

ω ω ω
= = σ σ σP C  

The observation equations ( )α α

=y f x  are then given by 

 
A
z

Α
ω =    

B B
zω =    

C A B
180 (z z )ω = ° − +  

Although, these equations are directly linear and one should take advantage of it 

(see below), we will treat the model as if it was nonlinear.  

With 
T

o o o

A B
z z⎡ ⎤= ⎣ ⎦x ,  e.g.,  o

A A
z '= ω ,  o

B B
z '= ω ,   [ ]o

z z

Τα

Α Β
= − = δ δx x x  

and 
T T

o o o o o o o o o

C
( ) z z 180 (z z )

Α Β Α Β Α Β
⎡ ⎤ ⎡ ⎤= = ω ω ω = °− +⎣ ⎦ ⎣ ⎦y f x  

the algorithm is applied as given above, noting that correct units should be used 

throughout the computational steps. Applying the algorithm, we begin with the 

evaluation of matrices A, b of the linear system = +b Ax v :  

 

1 0

0 1

1 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥− −⎣ ⎦

A ,    

o

A

b 0 o

o
CC C

' z 0

' z 0

' (180 ( ' ' ))'

Α

Β Β

Α Β

⎡ ⎤ω − ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − = ω − =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ω − °− ω +ωω −ω ⎣ ⎦⎢ ⎥⎣ ⎦

b y y  

The easily formed (2x2) normal matrix � must be inverted and all the relevant es-
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timates 
A B c

B C
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ{ z , z , z ,z , v , v , v , , , }

Α Β Α Β ω ω ω Α
δ δ ω ω ω  are then computed. In this ex-

ample, having initially linear equations, we could alternatively proceed on with a 

direct estimation of ( ˆ ˆz , z
Α Β

) instead of their corrections. In this case matrix A is 

the same while b is different. The same holds for � and u. 

 

4.1.1 Using coordinates as model parameters 

An alternative approach to formulate the functional model is to use (2-d) coordi-

nates as model parameters. Due to the linearization, approximate coordinates for 

points under estimation are computed by any suitable way, usually by a subset of 

observations and some known point coordinates, given or arbitrary defined. Coor-

dinates are preferably used in geodetic and surveying adjustment problems as they 

offer ease to express equations and compute any quantity. Coordinates cannot be 

derived from classical measurements like angles and distances. Therefore, in our 

measurement scheme, we must include or assign known coordinates to some 

points, either with respect to an official or arbitrary defined coordinate system. 
 
Assume a geodetic network with many vertices, the triangle being a trivial case, 

with a number of measured angles, more than the parametric degree r. Assigning 

coordinates to points-vertices, the shape, size, orientation, and the position of the 

network are fully defined. On the other hand, the observables (here angles) define 

only the shape of the network. Therefore, to describe fully the problem, we must 

formulate, by some means, the rest information carried by the coordinates, i.e. we 

must define the scale/size, orientation and position with respect to the coordinate 

system. This is possible by means of imposing constraints on point coordinates. A 

simple, usually followed, type of constraints is to keep fixed some coordinates, 

such that they do not influence what is defined by the observables (minimal con-

straints) - here the shape of the network/triangle. In a 2-d network with four de-

grees of freedom in general, the position is defined by fixing the coordinates of one 

point. The orientation and the size are also defined by fixing the coordinates of an-

other point. Generally, in a 2-d angular network any four coordinates, often two per 

point, eliminate the four degrees of freedom in plane; otherwise there is a so-called 

datum deficiency. 
 
In the triangle with the three measured angles, the position, size and orientation are 

defined by keeping fixed the coordinates for two vertices, e.g., A and B. By con-

sidering arbitrary values, e.g., (xA = 0 m,  yA = 0 m)  and arbitrary orientation, e.g., 

plane azimuth  αAB = 90º and scale, e.g., length  dAB = 100 m, then (xB=100 m, 

yB=0 m)  are obviously obtained. Keeping A and B fixed their coordinates are ab-

solutely known, i.e., constants. Applying the LS-algorithm, with unknown parame-

ters and approximate values 

 [ ]
T

C C
x y

α

=x ,   
T

o o o

C C
x y⎡ ⎤= ⎣ ⎦x   (computed from simple trigonometry) 
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the three non-linear equations ( )α α

=y f x  are given by, 

 
C

A

C

y
arctan

x
ω = ,    

C

B

B C

y
arctan

x x
ω =

−

,    
C B C

C

C C

x x x
arctan arctan

y y

−
ω = +    

Also, the analytical structure of A and b is, 

 

o o

C C
A A

o 2 o 2o o
AC ACC C

o o

C CB B

o o o 2 o 2

C C BC BC

o o o o
C C

C C C C
o o

o 2 o 2 o 2 o 2
C C

BC AC BC AC

y x
| |

(d ) (d )x y

y x
| |

x y (d ) (d )

y y x x| |
x y (d ) (d ) (d ) (d )

⎡ ⎤⎡ ⎤∂ω ∂ω −⎢ ⎥⎢ ⎥
∂ ∂ ⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥∂ω ∂ω ⎢ ⎥= = −⎢ ⎥
⎢ ⎥∂ ∂⎢ ⎥
⎢ ⎥⎢ ⎥∂ω ∂ω ⎢ ⎥⎢ ⎥ − + −⎢ ⎥∂ ∂⎢ ⎥⎣ ⎦ ⎣ ⎦

A  

 
T

b 0 0 0 0

A C C
' ' '
Α Β Β

⎡ ⎤= − = ω −ω ω −ω ω −ω⎣ ⎦b y y  

 

4.2 Using the method of condition equations  

From the observation equations, eliminating the two unknown parameters, we get 

one independent condition equation (s = n – r = 3 – 2 = 1), i.e., 

 C
g( ) 180 0

α

Α Β
=ω +ω +ω − °=y  

which is also linear. This equation could easily be written directly realizing the 

geometric angle condition. The matrices of the linear system are then formed,  

 [ ]1 1 1=B ,   [ ]C
' ' ' 180
Α Β

= ω +ω +ω − °w  

Generally, the number of independent conditions is easily determined if the para-

metric degree r had been previously determined (s = n – r), e.g. thinking in terms of 

the observation equations method. To find the correct r and mainly to formulate the 

condition equations, it may be a simple matter for some problems having a simple 

geometric configuration/design; otherwise it is rather difficult with a possible risk 

for an incorrect model. 
 
In this example, matrix M to be inverted is one (1x1)-one element. Generally, in 

view of the computational ‘difficulty’ compared to the method of observation 

equation where � is (mxm) or (rxr), we note that in cases that s = n – r < r or n < 2r 

the condition method is preferable. This is mainly the reason for using the condi-

tion method in the past when computing means were limited or even absent. On the 

contrary, formulating conditions is rather a difficult task in a complicated configu-

ration like a classical geodetic trigonometric network. Understanding that in geo-
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detic networks coordinates estimation is of primary importance, the ease of ex-

pressing the observation equations and the direct estimation of covariance matrices 

of unknown parameters, in relation to the plenty of computing power, makes the 

observation equation method almost the standard choice since some decades. 

 

4.3 Using the method of mixed equations  

In this method, m≤ r. Because m = r = 2 and s = n + m – r = 3, the functional mixed 

model is obtained directly by simply writing the observation equations as  

 
1 A

u z 0
Α

= ω − = ,   
2 B B

u z 0= ω − = ,   
3 C A B

u z z 180 0= ω + + − ° =  

from where, 

 

1 0

0 1

1 1

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

A ,   

1 0 0

0 1 0

0 0 1

⎡ ⎤
⎢ ⎥= =⎢ ⎥
⎢ ⎥⎣ ⎦

B I ,   

0

A

0

0 0

C A

' z

' z

' z z 180

Α

Β Β

Β

⎡ ⎤ω −
⎢ ⎥

= ω −⎢ ⎥
⎢ ⎥
ω + + − °⎢ ⎥⎣ ⎦

w  

Applying the LS algorithm best estimates are then derived.  
 
In the common case where m<r, we would have had a different functional model. 

For instance, by eliminating the parameter 
B

z : from equation u2, B B
z = ω  and sub-

stituting in u3 results in 
3 C A C

u z 180 0= ω + +ω − ° = . Finally, in the remaining two 

equations u1 and u3, we’ll have only one unknown parameter (
A

z ), noting that u3 is 

of a mixed type and cannot be expressed as ( )α α

=y f x , i.e., we have, 

 
1 A

u z 0
Α

= ω − = ,   
3 A B C

u z 180 0= +ω +ω − ° =  

The application of the algorithm results in 
A

ẑ . After the end of the adjustment al-

gorithm the estimate 
B B

ˆẑ = ω  is also obtained. 
 
We can also apply the mixed equations method using coordinates as previously 

described. As far as the algorithmic and computing ease, we will see that in some 

problems such as the best fit of a function to data points (see below), the mixed 

equation method takes precedence. 

 

4.4 Including observations of different type  

Apart from the three measured (horizontal) angles, let’s also measure the horizontal 

distance  dAB,  having in total  n = 4 observations. In this case the observations de-

fine the shape and the scale/size of the triangle. The minimum number of observ-

ables for a solution (shape + scale) is now three (r = 3), e.g., two angles to define 

the shape and the measured distance to define the scale of the triangle.  
 
In the method of observation equations with s = 4 and m = r = 3, we can proceed 
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on as previously having now one more unknown parameter (
AB

z ) and thus one 

more equation, e.g., 
AB AB

d z= . Using coordinates as parameters, we must realize 

that the minimal constraints are three; two for the position of the triangle, e.g., fix-

ing 
A A

(x , y )  and one for the orientation, e.g., by fixing 
B

y  or 
B

x . Considering 

B C C
(x , x , y )  as the three unknown parameters (m=3), the additional observation 

equation is 2 2

AB B A B A
d (x x ) (y y )= − + − . The functional model is easily formed 

when more distance observations are included, noting that m = r = 3 in any case.  
 
In the method of condition equations, s = n – r = 4 – 3 = 1 and the obvious condi-

tion is 1 C
g( ) g 180 0

α

Α Β
= =ω +ω +ω − °=y , leaving ´out of the model´ the dis-

tance 
AB

d , meaning that the scale/size of the triangle is not adjusted and simply is 

defined from the distance observation without error control on it. The same holds 

also for the method of observation equations, not directly shown as in the condition 

equation. Should this be avoided, one more or two distance observations should be 

observed. With one more distance observation, n=5, s = n – r = 5 – 3 = 2, and the 

second condition equation comes from the law of sines where two measured dis-

tances are included. With three distance observations, n = 3, s = n – r = 6 – 3 = 3, 

and the third condition equation comes again from the law of sines or even from 

the law of cosines. 
 
If we would prefer to use the method of mixed equations with m<r, one at least of 

the unknown parameters should be eliminated from the equations of the method of 

observation equations. 

 

 

5. Introducing redundant constraints on unknown parameters 

In geodetic and surveying networks coordinates are used as unknown parameters. 

In the previous example, we discussed the definition of the coordinate system 

through minimal constraints on a number of point coordinates that are kept fixed. 

Minimal constraints do not affect the estimated errors and observable parameters, 

regardless of their choice; introducing them in the adjustment model, statistical 

tests on the quality of observations are meaningful. On the other hand, they affect 

the estimates of the unknown parameters/coordinates and their covariance matrices.  
 
Very often, compliance with technical specifications or operational requirements 

demand for redundant constraints based on the supposed higher accuracy of the 

control points included in the network and kept fixed, to increase the overall accu-

racy. This is normally true but sometimes, a significant problem may have de-

stroyed the (assumed) superior quality of the control points. Redundant constraints 

do affect everything in the adjustment results. Normally, their quality must be 

tested, usually statistically; otherwise the reason for unreliable results cannot be 



A discussion on Least Squares Adjustment with Worked Examples 73 

 

safely detected, i.e. if the reason is the quality of the observations or the quality of 

the redundant constraints or both. 

 

5.1 A worked example with and without constraints  

In a levelling network with four points (1, 2, 3, 4), five height differences were 

measured (n=5),  

 [ ]
T

12 13 23 24 34
h h h h h

α

= δ δ δ δ δy ,    [ ]
Tb

12 13 23 24 34
h h h h h′ ′ ′ ′ ′= δ δ δ δ δy  

The goal is to determine the best estimates of height differences between any pair 

of points under the condition 
14 14

h q constantδ = = .  
 
The observations, obviously, define height differences. Ignoring, for the moment, 

the condition that should be satisfied, we need only three (r = 3) observables for a 

solution, e.g., 
12 13 24

( h h h )δ δ δ : from 
12 13

( h h )δ δ  and the loop-condition on  

(1-2-3-1), 
12 23 13
h h h 0δ + δ − δ = , 

23
hδ  is defined, while from the loop-condition on 

(2-4-3-2), 
23 34 24

h h h 0δ + δ − δ = , 
34

hδ  is also defined. We see that n (=4) > r (=3), 

and a suitable number no = r = 3 of observables exist; therefore, we have an ad-

justment problem. 

 

2

3

1
4

 
 

Using the observation equations method, the problem can be solved by choosing 

three of the observables (m = r = 3) as also being unknown parameters and subse-

quently formulate the respective equations, as we did in the previous worked ex-

ample. Alternatively, we can choose heights to describe the problem and the three 

unknown parameters, e.g., the heights of points (2, 3, 4), [ ]
T

2 3 4
h h h

α

=x , while a 

fixed height will be given to the fourth point, i.e., 
1 1
h q constant= = , in order to 

define the height system/datum by minimal constraints (k=1). From three heights 

among five points and one known height any other height difference is well de-

fined. 
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Including the constraint, 
14 14

h qδ = , we easily notice that the parametric degree 

changes and becomes r = 2, as we need only two observables to obtain a solution, 

e.g., 
12 13

( h h )δ δ . In the case of coordinates, we have only two known heights 

(m=2), because, from 
14 4 1 14

h h h q constantδ = − = =  we get one more known 

height, 
4 1 14 1 14

h h h h q constant= + δ = + = , eliminating thus the additional con-

straint equation by fixing two heights. The adjustment algorithm, i.e. observation 

equation without constraints, can be normally applied keeping in mind that the ap-

plied two constraints are redundant and should be tested. 
 
For the implementation of the condition method, we notice that without constraints, 

s = 5 – 3 = 2, and the two (independent) conditions are directly formed by any pair 

of equations among the loops (1-2-3-1), (2-3-4-2) and (1-2-4-3-1). Setting the con-

straint, we have, s = 5 – 2 = 3. The three (independent) conditions are directly 

formed by any pair of equations among the loops (1-2-3-1), (2-3-4-2) and (1-2-4-3-

1) plus one condition reflecting the need that one given height difference is con-

stant. The last condition could be formed by a loop-equation that includes the con-

stant height difference, e.g., 
12 24 14

h h q 0δ + δ − = .  
 
The mixed equation method can also be applied considering the above remarks. 

 

 

6. Derived observations  

Sometimes, instead of the original observations, derived observations are used. The 

advantage could be a simpler functional model but with a probably more compli-

cated stochastic model and a demanding software. A simple example will clarify 

these concepts. Consider a measured plane (convex) quadrilateral (1-2-3-4) with 

observables the 12 horizontal directions, three from each vertex to the other ones. 

 

4

2

1

3

 
 

A horizontal direction 
ij

β  is an angular quantity measured from a point (i) to an-

other point (j) with respect to a reference direction 
io

θ , e.g. the zero direction of 

the horizontal circle of the theodolite. The reference direction is an orientation pa-

rameter that must be defined, among other parameters, in the method of observa-

tion equations (or even in the mixed model); otherwise the concept of a direction is 

meaningless and the problem is not correctly described. A series of measured di-
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rections refers to the directions from one point to other points, having all of them 

the same orientation direction. On the other hand, the difference between any two 

directions form the respective horizontal angle, 
ijk ik ij

ω =β −β , where i � k is the 

right sighting and i � j the left sighting. From a horizontal angle and one of its di-

rections the other direction is directly derived.  
 
Directions as observable parameters define not only the shape of the quadrilateral 

but also the four orientation parameters, one at each point. The parametric degree r 

= 8 and this should be explained, through a construction scheme, as it is not so 

clear: Let’s take an arbitrary length e.g., for the distance 
12
d  with an arbitrary ori-

entation. From point 1 we use 
14

β  as an orientation direction and draw 
13
β , 

12
β . 

From point 2 take as reference 
21

β  and draw
24

β , 
23

β  so that point 3 is determined 

by the intersection with 
13
β . The intersection of the respective directions defines 

points 3 and 4. Up to now we have used six directions so that the shape of the 

quadrilateral is well defined; any other angle can be derived using simple geome-

try. However, there is something missing, and this is the possibility to describe di-

rections from points 3 and 4. This can be feasible by using a reference direction for 

point 3, e.g., 
32

β  and one for point 4, e.g., 
43

β . At this point the problem has been 

fully described by a least number of eight observables, hence the parametric degree 

r = 8 and the degrees of freedom f = 12 – 8 = 4. Other equivalent subsets of eight 

observables are possible. 
 
Having n = 12 and r = 8, we must choose m = r = 8 unknown parameters in case 

the method of observation equations is used. One option is to take a suitable set of 

eight unknown parameters among the set of the twelve observables and form the 

function model accordingly (some geometric manipulations needed). The other 

option, almost always preferred, is to use point coordinates to describe the prob-

lem. In this case the reference system/datum should be also defined, e.g., by fixing 

coordinates (x1=0, y1=0) and (x2=q, y2=0), q being a constant (minimal constraints). 

Therefore, with four unknown parameters, being (x3, y3), (x4, y4) and with four un-

known orientation parameters (θ1, θ2, θ3, θ4), eight unknown parameters are used in 

total. We remind that the observation equation of a horizontal direction is given by, 

 
j i

ij ij i i
i

x x
arctan

y y

−⎛ ⎞
β = α −θ = −θ⎜ ⎟

−⎝ ⎠
 

where, 
ij

α  is the plane azimuth (angle from the grid north to the direction i�j).  

Usually, in geodetic networks, 
i

θ  coincides with the most left measured direction 

in a series from a station point; its approximate value is given by the azimuth com-

puted from approximate coordinates. 
 
In case of condition equations, the number of the independent equations should be 
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s = n – r = 12 – 8 = 4; three simple angular equations – one for each of three out of 

four formed triangles, and one ‘side equation’ which is a bit complicated and will 

not be given here. Because the condition equations use the directions as pairs of 

differences between them (angles), no orientation parameter is needed. 

 

6.1 Using derived angles instead of the initial directions  

A different functional model makes use of the eight horizontal angles derived from 

the above twelve measured directions. In terms angles as observables, we need at 

least four angles (r = 4) to define the shape, e.g. the four angles at the end points of 

side 1–2 (any other angle is well defined). This is the case of the so-called derived 

observations (here derived angles) instead of the original measured observations 

(here directions). No orientation parameters exist in the respective eight angle ob-

servation equations, as expressed with respect to the four unknown parameters  

(m = r = 4), in the method of observation equations. In the method of condition 

equations, the number of conditions s = n – r = 8 – 4 = 4 should be formed, three 

angle equations and one side equation (like the directions scheme). The results be-

tween the adjustments, directions against angles, will be the same only if we will 

use the correct stochastic model for the derived angles; correlation exist between 

consecutive angles as their derivation uses a common direction. For instance, sup-

posing uncorrelated directions, and taking 
12 13 14

2 2 2 2

1β β βσ = σ = σ = σ , the derived con-

secutive angles  

 
132 12 13

( )ω = β −β    and   
143 13 14

( )ω = β −β   

will have,  

 
132 143

2 2 2

1
2

ω ω
σ = σ = σ    and   

132 143

2

1ω ω
σ = −σ ,  

as obtained by the error propagation law. 

 

 

7. Best fitting problems with an example for a best fit circle  

In problems, such as the best fit of a function to data points expressed by measured 

coordinates, e.g., line, plane curve, plane, circle, sphere, ellipsoid, some difficulties 

arise. Among them the selection of the functional model and method, the lineariza-

tion process and the implementation of the algorithm are of primary importance. 

Next, we will try to point out some of these issues through a worked example of a 

best fit circle.  
 
Given N data points 

i i
(x , y )′ ′ , i=1, 2, …N, measured along the circumference of a 

circle 
c c

(x , y ,R) , with 
c c

(x , y )  the coordinates of the circle center and R its ra-

dius. The familiar circle equation is given by, 
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 2 2 2

i c i c
(x x ) (y y ) R 0− + − − =  (7.1) 

Due to errors, all points do not satisfy the same equation; any triplet of data points 

determine a different circle. The goal is to find the best solution, i.e. the best circle 

under some fitting criterion. Generally, in fitting problems, data points should have 

a suitable distribution, here along a large arc and preferably along the whole circle, 

so that the circle is correctly defined avoiding probable inconsistencies and bad 

approximate values. However, small arcs should be avoided as considerable errors 

may grossly affect estimates of circle parameters.  
 
Noting with 

i i
(x , y )  the observables and 

i i
x y

(v ,v )  the errors, an efficient fitting 

criterion, is based on the minimization of squares of both errors. This can be ex-

pressed by the minimization of the geometric distances of the observed points from 

the best fit circle, 

 ( )
2

2 2 2

i i c i c
d (x x ) (y y ) R′ ′= − + − −∑ ∑  (7.2) 

Such distances are reckoned along the directions from any data point to the center 

of the circle in case the errors/observations have the same uncertainty, a common 

situation in practice (geometric fit, orthogonal fit).  
 
A criterion not so strict but competitive and often preferable to the previous one for 

its mathematical simplicity, is based on the minimization of the squares of the so-

called algebraic distances, i.e., 

 ( )
2

2 2 2 2

i i c i c
d (x x ) (y y ) R′ ′= − + − −∑ ∑  (7.3) 

In literature (see, e.g., Chernov 2010), there are many approaches and model modi-

fications to both above model implementations, e.g., either using the model 

 2 2

i i i i
A(x y ) Bx Cy D 0+ + + + =    (under constraint on A, B, C, D)  

or 
i i i
z Bx Cy D 0+ + + = ,  from where, with the substitutions, 

 2 2 2 2

c c c c i i i
B 2x , C 2y , D x y , z x y= − = − = + = +  

we derive a linear model with respect to the unknown parameters with simple and 

fast computational algorithms. We do not intend here to go into details; instead we 

will point out how this problem could be faced with each one of the three basic ad-

justment methods and how one could face the effect of the linearization to obtain a 

best or at least a sufficient solution. 

 

7.1 Using the method of observation equations 

The model ( )α α

=y f x  for a circle, can be described by 
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i c i i c i

x x Rcos , y y Rsin= + θ = + θ  (7.4) 

where, 
i

θ  the angle from the x-axis anticlockwise to the point on the circumfer-

ence. In total, we have m = r = 3 + N unknown parameters with n = 2N observa-

tions. For N > 3 so that n = 2N > r, an adjustment problem of observations is evi-

dent. The adjustment can be normally applied, noting that the normal equation ma-

trix is (mxm) and that good starting values for the approximate coordinates are eas-

ily computed by suitable triplet/triplets of data points, for the center and the radius. 

In addition, from each data point an approximate angle θ is also obtained. Con-

straints on the unknown parameters may be included, such as the circle must have a 

known radius, the circle is passing from a known point or the circle is tangential to 

a known line. 
 
A worthwhile notice for the parametric degree is that r (= N + 3) depends on the 

number of observations, something that do not happen in geodetic and surveying 

network adjustment problems. The same dependence of the parametric degree on 

data points is true in all best fitting problems, where given/measured coordinates 

are treated as observables. The same situation exists in the coordinate transforma-

tion problems between different systems, as it is the well-known similarity trans-

formation, where coordinates of common points in both systems are affected by 

errors.  

 

7.2 Using the method of mixed equations 

Eliminating all the 
i

θ  parameters from (7.4), by adding the squares of coordinate 

differences, we will obtain a different functional model, 

 2 2 2

i i c i c
u (x x ) (y y ) R 0= − + − − =  (7.5) 

that describe mixed equations ( , )α α

=u y x 0  . In this model, we have m = 3 un-

known parameters (m < r (= 3 + N))  and  s = N mixed equations (one per point). 

For uncorrelated observations, a common practice, the advantage with this method 

is that the normal equation matrix 3x3 instead of (3+N)x(3+N) in the method of 

observation equations; certainly, there are some matrix-partitioned techniques re-

ducing the computation effort for many data points in the method of observation 

equations. Overall, the computational ease makes the mixed equation method the 

preferred one. Constraints can also be included.  

 

7.3 Using the method of condition equations 

Even though the condition method does not offer any serious advantage, for the 

shake of completeness, we note that the functional model, ( )α =g y 0 , can be de-

rived by complete elimination of the unknown parameters. From the mixed equa-
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tions (7.5), we take three of them and analytically express the coordinates of the 

circle and its radius in terms of the coordinates of the three used points. Next, we 

substitute these coordinates to the remaining (N–3) equations and in this form no 

unknown parameter except the observables is included. Matrix M to be inversed is 

(N–3)x(N–3) and nothing notable is gained. Moreover, equation complexity is ob-

vious. Therefore, the mixed equation model is again the preferred one among the 

three basic adjustment methods.  

 

7.4 The linearization effect  

LS adjustment follows normally the expansion of the initial functional model to a 

Taylor series to derive linear equations. In some problems, if an exact non-linear 

solution is possible, it should be preferred or at least compared to the obtained one 

through linearization, avoiding possible divergence of a correct solution.  
 
Partial derivatives in the method of observation equations (matrix A), depend only 

on the approximate values of unknown parameters α

x . Starting with good initial 

values o

x , some iterations are generally needed to achieve convergence and a cor-

rect solution.  
 
In the method of condition equations where there are no (unknown) parameters the 

point of expansion in most of the classical treatments is around b
y  and not 

o o( ( ))=y f x . This fact imposes some questions for the correct solution. The algo-

rithmic iterations in the adjustment process start with initial values –the classical 

approach- and then repeated accordingly, in a similar treatment as described in the 

following more general case of the mixed model. However, the linearization error 

(neglecting higher order terms) may affect the solution to a false point despite an 

achieved convergence. Moreover, matrix B acquires variability/stochastic proper-

ties under the theoretical infinite repetitions of the observations, as it depends on 

the observations. To avoid stochastic problems, since the experiment is usually car-

ried out once, we suppose that o

y  ‘happens’ to be identical with b
y . 

 
Similarly, in the mixed equations model, with  

 [ ]
T

c c
x y R

α

=x ,    [ ]
T

c c
x y R= δ δ δx  

 [ ] [ ]
T Tb

1 1 2 2 N N 1 1 2 2 N N
x y x y x y , x y x y x y

α
′ ′ ′ ′ ′ ′= =y y� �  

the expansion is traditionally developed around the point o b( , )x y  instead of 

o o( , )x y . Again, we have a similar risk as mentioned above, as matrices B and A 

depend also on the observations.  
 
In case the initial equations of the functional model are linear or partly linear the 

algorithm allows for simplifications and similarities with the classical approaches. 
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We must face the linearization effects by either a non-linear solution, if possible, or 

by iterating properly the linear one, introducing some modification on the general 

adjustment model of Gauss-Helmert.  
 
To show the effect of the model modification, we’ll take the general/mixed model 

for the circle fit. The linearization, taking only the first order terms, has as follows: 

 
o o o o o o oi i

i c c i i i c c i i c c c c

c co o

u u
u (x ,y ,R,x , y ) u (x ,y ,R ,x ,y ) (x x ) (y y )

x y

∂ ∂
= + − + − +

∂ ∂
 

 + 
o o oi i i

i i i i

i io o o

u u u
(R R ) (x x ) (y y ) ... 0

R x y

∂ ∂ ∂
− + − + − + =

∂ ∂ ∂
. (7.6) 

Noting that 

 o

c c c
x x x= + δ ,   o

c c c
y y y= + δ ,   o

R R R= + δ ,  

and 

 
i

i i xx x v′= − ,   
i

i i yy y v′= − ,   
i

o o

i i x
x x v′= − ,   

i

o o
i i yy y v′= − , 

from where,  

 
i i i i

o o o

i i i x i x x x
x x (x v ) (x v ) v v′ ′− = − − − = − + ,   

i i

o o
i i y yy y v v− = − + , 

we have, 

 o o o o o o o 2 o o 2 o 2

i c c i i i c i c
u (x , y ,R ,x , y ) (x x ) (y y ) (R )= − + − − = 

  =
i i

o o 2 o o 2 o 2
i x c i y c(x v x ) (y ' v y ) (R )′ − − + − − −  

 
o o oi i i

c c c c

c c oo o

u u u
(x x ) (y y ) (R R )

x y R

∂ ∂ ∂
− + − + −

∂ ∂ ∂
= 

  = o o o o o

i c c i c c
2(x x ) x 2(y y ) y 2R R− − δ − − δ − δ  

  =
i i

c
o o o o o

i x c i y c c

x

2 (x v x ) (y ' v y ) R y

R

δ⎡ ⎤
⎢ ⎥⎡ ⎤′− − − − − δ⎣ ⎦ ⎢ ⎥
⎢ ⎥δ⎣ ⎦

 = 
i i

A x  

 
o oi i

i i i i

i io o

u u
(x x ) (y y )

x y

∂ ∂
− + −

∂ ∂
 = o o o o o o

i c i i i c i i
2(x x )(x x ) 2(y y )(y y )− − + − − = 

  =
i i i i i i

o o o o o o
i x c i x x i y c i y y2(x v x )(x v v ) 2(y ' v y )(y ' v v )′ ′− − − − + − − − − = 

  =
i

i i

i

xo o o o
i x c i y c

y

v
2 (x v x ) (y ' v y )

v

⎡ ⎤
⎡ ⎤′− − − − − ⎢ ⎥⎣ ⎦

⎢ ⎥⎣ ⎦
+ 
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  +
i

i i

i

o
i xo o o o

i x c i y c o
i y

x v
2 (x v x ) (y ' v y )

y ' v

⎡ ⎤′ −
⎡ ⎤ ⎢ ⎥′ − − − −⎣ ⎦ ⎢ ⎥−⎣ ⎦

 = 
i

i

o
i x

i i i o
i y

x v

y ' v

⎡ ⎤′ −
⎢ ⎥− +
⎢ ⎥−⎣ ⎦

B v B . 

With 

 
i

i i

i

o
i xo o 2 o o 2 o 2

i i x c i y c i o
i y

x v
(x v x ) (y ' v y ) (R )

y ' v

⎡ ⎤′ −
⎢ ⎥′= − − + − − − +
⎢ ⎥−⎣ ⎦

w B   

we obtain the linear system, 

 + − =w Ax Bv 0  (7.7) 

A clarification on the iterating LS adjustment algorithm until convergence is 

achieved. We begin with the zeroth iteration or the first solution, by choosing 
o b

=y y  from where o

v  is zeroed and matrices A, B and w are functions of 

b o( , )y x  as happens in the classical treatment. Therefore, the LS solution gives 

o oˆ ˆ( , )v x  from where o b o (o) o oˆ ˆ ˆ ˆ( , )α

= − = +y y v x x x . With the new approximate 

values o (o)ˆ ˆ( , )α

y x , the first iteration or 2nd solution gives o(1) o(1)ˆ ˆ( , )v x  and 

o(1) b o(1) (1) (o) o(1)ˆ ˆ ˆ ˆ ˆ( , )α α

= − = +y y v x x x . Similarly, the nth iteration (n+1 solution) 

results in o(n) o(n)ˆ ˆ( , )v x  and o(n) b o(n) (n) (n 1) o(n)ˆ ˆ ˆ ˆ ˆ( , )α α −

= − = +y y v x x x . Setting a 

converge limit on the (absolute) differences between two successive estimations, 

i.e., o(n) o(n 1) o(n) o(n 1)ˆ ˆ ˆ ˆ(| | , | | )− −

− ≤ − ≤

v x
v v e x x e , the final LS-estimates are ob-

tained. To prevent many iterations and probably a diverse solution to a local mini-

mum, starting values o

x  should be computed as close as possible to the correct 

estimates, usually by a subset of observations. 
 
Details for the previous scheme of iterations are extensively discussed by Pope 

(1972) where some pitfalls are also underlined. Some other examples and ap-

proaches are given, e.g., in Schaffrin and Wieser (2008), Pan et al. (2015). A sim-

plified mathematical and algorithmic implementation of the above Modified Mixed 

Model (MMM) in practical fitting problems is presented in Fotiou (2017a, 2017b).  

 

 

8. Concluding remarks 

A means to study the real world and to obtain quantitative determination for vari-

ous physical problems is provided by the analysis of observations in relation to a 

mathematical model that reflects the unknown reality. For that purpose, the ad-

justment of observations consists an indispensable part in geodetic sciences, geo-

matics and other related fields.  
 
Central LS adjustment topics, about the correct choice of the adjustment 

model/method and the efficient algorithmic implementation for parameter esti-
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mates and error control, need a closer look as the results may be crucial in many 

practical applications. A better understanding of the involved concepts, models and 

methods can be gained through simple worked examples presented in this paper, 

building step by step acquaintance and developing a good and effective theoretical 

framework.  
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