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Abstract: The datum-related singularity of the input normal equations (NEQ) is a crucial 

element in the context of terrestrial reference frame (TRF) estimation under the minimal-

constraint framework. However, this element is often missing in the recovered NEQ from 

SINEX files after the usual de-constraining based on the stated information for the stored 

solutions. The same setback also occurs with the original NEQ that are formed by the least-

squares processing of space geodetic data due to datum information which is carried by 

various modeling choices or other software-dependent procedures. In the absence of this 

prior singularity, it is not possible to obtain genuine minimally-constrained solutions be-

cause of the interference between the input NEQ’s content and the external datum condi-

tions, a fact that may alter the geometrical information of the original measurements and 

can cause unwanted distortions in the estimated solution. The goal of this study is the for-

mulation of a filtering scheme to enforce the proper singularity in the input NEQ with re-

gard to datum parameters that will be handled by the minimal-constraint setting in TRF 

estimation problems. The importance of this task is extensively discussed and justified with 

the help of several numerical examples in different GNSS networks. 
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1. Introduction 

The least-squares estimation of station positions in geodetic networks, and the akin 

task of terrestrial reference frame (TRF) realization, is a rank-deficient problem 

without a unique stable solution. This is a well known aspect which reflects the 

inability of geodetic measurements to define by themselves, and at sufficient accu-

racy level, all the required components of a terrestrial coordinate system (Sillard 

and Boucher 2001; Dermanis 2003). Typically, the solution to such problem is de-

rived by the constrained inversion of a system of normal equations (NEQ) using an 

appropriate set of external datum conditions to complement the lack of data infor-

mation. What is more, the rank defect of this problem is a prerequisite for applying 

(and justifying the use of) the minimal constraints theory in support of the afore-
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said NEQ inversion. This operational approach is widely used for the primary re-

alization of TRFs, as well as in the alignment of geodetic networks to already exist-

ing frames, and it is known to impose important and desirable properties in the es-

timated solution (Altamimi et al. 2002; Angermann et al. 2004; Altamimi and 

Dermanis 2009; Legrand et al. 2010; Kotsakis 2013; Glaser et al. 2015). However, 

the minimal constraints are frequently employed in practice without verifying the 

true rank defect of the input NEQ at hand, and thus their role should often be ac-

cepted rather loosely (e.g. without any guarantee for the distortion-free property of 

the adjusted network) by evoking the notion of the “practically-minimal” datum 

conditions that was introduced by Sillard and Boucher (2001). 
 
For various reasons the aforementioned rank defect does not always occur in strict 

numerical sense, a fact that may cause unwanted effects in “minimally-

constrained” solutions from space geodetic data. If the input NEQ are non-singular 

then any set of additive datum constraints will generally affect the geometrical 

characteristics of the estimated solution, and it will lead to a distorted network in 

the sense of altering the information content of the used measurements. This, in 

turn, may affect other inferences of scientific interest such as the quantification of 

nonlinear signals (and their geophysical interpretation) in a time series of “mini-

mally-constrained” solutions with respect to a global secular frame, or the statisti-

cal testing on well-estimable quantities by producing false judgments with type I or 

type II errors. In our view this problem has not been sufficiently addressed in the 

geodetic literature and it is often overlooked with regard to its practical relevance 

for TRF applications. A general diagram that outlines the implications due to non-

singularity in the input NEQ under the minimal-constraint estimation framework is 

given in Fig. 1. 
 
Apart from being a primary constituent of network adjustment theory, the NEQ 

rank defect is also an essential apparatus that can facilitate (i) the purification of the 

datum definition process from the data noise and other observation/technique-

related limitations, and (ii) the independence of the estimated geometrical charac-

teristics in a geodetic network from the external datum conditions. What we imply 

here is the desire to work with singular NEQ whose rank defect is deliberately 

tuned to datum parameters that we intend to fix by minimal constraints on the basis 

of high-quality reference stations. This not only will assure that the datum defini-

tion does not interfere with geodetically estimable elements like the network ge-

ometry and its temporal variation, but also that the datum definition itself remains 

unaffected by the used observations and their associated errors. Such de-coupling 

requires the conversion of the input NEQ to a strictly singular system with equiva-

lent geometrical content and rank defect linked to pre-selected datum parameters. 
 
Following the previous discussion, the problem that we will study herein is the 

swapping of a normal system from a (weakly) full-rank form to a (strictly) rank-

deficient form by removing its internal information for a prescribed set of datum  



128 C. Kotsakis 

 

interference

External “minimal” 
constraints

Frame 
information 

(weak/strong)

Input (unconstrained) NEQ

Inner-geometry 
information 

(strong)

Implication 1

Implication 2

Implication 3

Well known optimal properties and 
special matrix formulae from minimal 
constraints theory will not hold and 
should not be used or claimed.

The estimated network geometry will 
be affected by the external “minimal” 
constraints.

All datum parameters are influenced by 
the external “minimal” constraints – not 
just the weak ones which are supposed 
to be fixed by those constraints!

 

Figure 1. Theoretical and practical implications due to non-singularity in the input �EQ 

under the minimal-constraint estimation framework. �ote that a large weight 

matrix for the external constraints may eliminate the impact of the �EQ content 

on the external datum definition, but it cannot prevent the distortion of the net-

work geometry and the alteration of well-estimable datum parameters which are 

not included in the external constraints (more explanations are provided in fol-

lowing sections of the paper). 

 

parameters while retaining the rest of the data information. The input NEQ under 

consideration are the ones obtained by geodetic data processing in the context of 

TRF estimation based on the Gauss-Markov linear adjustment model (e.g. Anger-

mann et al. 2004; Bloßfeld 2015). This covers all usual schemes of NEQ-based 

frame realizations, including (i) epoch solutions by single network analysis or sub-

network combination, (ii) cumulative solutions by multi-epoch stacking, and (iii) 

inter-technique combination solutions. The non-singularity of the input NEQ in any 

of the above cases raises concerns which will be addressed in the rest of this study 

by answering the following questions: 

• how to identify the rank defect and, especially, how to assess the datum 

information carried by the (unconstrained) �EQ in a geodetic network; 

• how significant is the distortion caused in a minimally-constrained net-

work solution due to the absence of true rank defect in the input �EQ; 

• how to convert �EQ to a truly singular system with given rank defect for 

particular frame components, without altering the �EQ’s geometrical 

content. 
 
This study investigates the above issues and presents an algebraic approach to en-
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force the proper (or desired) singularity in NEQ systems for TRF studies. The mo-

tivation of our analysis is twofold and it aims to accommodate either the recovery 

of theoretically expected singularities, or the intentional removal of distrusted da-

tum information that already exists in the available NEQ. Although our examples 

refer only to cases of Global Navigation Satellite Systems (GNSS) networks with 

fixed satellite orbits and Earth rotation parameters (ERPs), the rationale and the 

mathematical formulation of this study are applicable to any type of frame realiza-

tion or network adjustment problem from geodetic data. 

 

 

2. Μain aspects of the problem 

Let us consider a NEQ system as obtained by the analysis of space geodetic obser-

vations for estimating the network coordinates X  in static or linear-kinematic 

mode (i.e. the vector X  may contain either station positions or station posi-

tions+velocities). It is assumed that any nuisance parameters have been reduced or 

eliminated beforehand, and the input NEQ are given in the usual linearized form: 

 ( )   

o
− =� X X u  (1) 

where �  is the normal matrix, 
o

X  is the vector of the a priori coordinates, and u  

is the right-hand side normal vector. The formation of such NEQ in practice, either 

by single network analysis or by subnetwork combination through stacking proce-

dures, may often lead to a full rank system. This is not surprising and it can occur 

due to datum information which is carried by various modeling choices or soft-

ware-dependent procedures during the data analysis stage. The existence of this 

situation and its consequences for geodetic network analysis were first discussed in 

Davies and Blewitt (2000) and later by Kelm (2003). It has been also implied in 

NEQ combination strategies as presented by Seitz et al. (2012, see for instance Eqs. 

(1)-(2)) and in the computation of “free” network solutions via the regular inverse 

of �  (Dach et al. 2015, p. 247). Lastly, it was considered by Rebischung et al. 

(2016) in the pre-processing of daily SINEX (Solution Independent Exchange 

Format) files from the International GNSS Service (IGS) Analysis Centers, along 

with a corrective scheme which will be further discussed in Sect. 4. 
 
To demonstrate the occurrence of the aforementioned situation, we give in Fig. 2 

some examples of the eigenvalue spectra for (unconstrained) normal matrices that 

have been obtained from weekly SINEX files in three different GNSS networks: 

the European Reference Frame Permanent Network (EPN), the South American 

Reference Frame Network (SIRGAS), and the Asia-Pacific Reference Frame Net-

work (APREF). In all cases, the NEQ were reconstructed via the standard de-

constraining (IERS 2006, appendix II) based on the stated information for the ap-

plied constraints in the stored weekly solutions. The smallest eigenvalues of the  
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Figure 2. Eigenvalues of weekly normal matrices for three different G�SS networks: EP� 

(upper plots), SIRGAS (middle plots) and APREF (bottom plots). The uncon-

strained �EQ have been reconstructed from the stated information in the corre-

sponding SI�EX files: EUR18697.snx, SIR18697.snx, AUS18697.snx. 
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recovered normal matrices range from 0.01 to 0.2, and they largely reflect the weak 

origin information due to the fixation of the satellite orbits in the respective net-

works. The ratio between the maximum and minimum eigenvalues in these exam-

ples is 104-105 while the apparent gap in the lower band of the spectrum does not 

exceed one order of magnitude, thus implying a rather well-conditioned invertible 

normal matrix without any real rank deficiency! Analogous behavior can be found 

in the daily NEQ of these networks, as well as in their multi-year stacked NEQ 

where both station positions and velocities appear in the unknown parameters of 

Eq. (1). 
 
Although the geometry of the estimated polyhedron is well determined by invert-

ible NEQ like the ones considered in the example of Fig. 2, it will still refer to a 

loose coordinate system which can be far from the desired frame for the underlying 

network. The datum definition, or at least a part of it, is thus always implemented 

by external conditions which complement the weak data-provided frame informa-

tion. Various tools have been developed for this purpose and they are regularly 

used to handle the datum choice problem in geodetic frame realizations. The so-

called minimal constraints (MCs) and the related no-net-translation (NNT), no-net-

rotation (NNR), no-net-scaling (NNS) conditions are primary examples of such 

tools, which support the realization of high-quality TRFs without theoretically in-

terfering with the well-estimable content of the observations; see e.g. Altamimi et 

al. (2002), Altamimi (2003), Angermann et al. (2004), Seitz et al. (2012) and 

Glaser et al. (2015). In practice, however, the MC implementation could affect all 

estimable network characteristics since the addition of datum constraints to a nor-

mal matrix that is already invertible (as in Fig. 2) will generally yield a distorted 

solution. Hence, a reasonable concern for TRF studies is whether the regularity of 

the input NEQ may cause a sizeable network distortion even when the practically 

minimal constraints − in the sense described by Sillard and Boucher (2001) − are 

applied towards the inversion of Eq. (1). An attempt to answer this question is 

given in Sect. 3. 
 
The scope of this study is to formulate an analytic procedure, hereafter called con-

trolled datum removal (CDR), for eliminating prior datum information from avail-

able NEQ in geodetic networks. Its role is to allow the proper implementation of 

MC theory in frame realization either for single-epoch or multi-epoch cumulative 

network solutions. In essence what we aim for is to ensure that a chosen set of da-

tum conditions will be a rightful choice of minimal constraints for TRF estimation 

problems! To meet this requirement we have to remove beforehand any informa-

tion related to datum parameters that we intend to define through the external 

minimal constraints and, at the same time, preserve the original NEQ content about 

the network geometry (and also about estimable frame components that we do not 

wish to be handled by the external constraints). 
 
The rationale of our analysis resembles the assessment of inner accuracy in geo-



132 C. Kotsakis 

 

detic networks. The latter is a useful concept that was introduced in geodesy by 

Meissl (1965, 1969) in the context of a filtering process for removing the effect of 

an arbitrary set of implicit parameters out of a given covariance (CV) matrix. The 

filtered parameters are the shifts, rotations and scale of a coordinate system, 

whereas the inner accuracy corresponds to the quality of a coordinate set after hav-

ing removed the influence of its underlying reference frame. Complementary to 

this concept is also the covariance-based treatment of Sillard and Boucher (2001) 

for determining the frame sensitivity of space geodetic techniques in regional or 

global networks. In contrast to these approaches, our study presents (and advocates 

the necessity of) a “frame filtering” process that can be applied directly at the NEQ 

level, without any need to employ intermediate covariance matrices. 
 
As a final remark, let us note that the CDR should not be confused with the usual 

de-constraining which is often applied in TRF applications. The latter is a standard 

tool for removing the additive constraints that were used to obtain a network solu-

tion based on stated information that is stored in SINEX files (e.g. IERS 2006, ap-

pendix II). The CDR, on the other hand, is a tool towards the removal of datum 

information in NEQ which have been already recovered from SINEX files, or 

formed directly by the analysis of geodetic observations. Its use will guarantee the 

rank defect with regard to datum parameters that will be handled under the MC 

setting – more details and the related mathematical formulation will be given in 

Sect. 4. 

 

 

3. NEQ diagnostic analysis 

3.1 General remarks 

There are various ways to infer the datum content of a normal matrix and to check 

whether it has a true rank defect with regard to one or more frame components 

(origin, orientation, scale). The analysis of its eigenvalues is a basic tool that can 

reveal the rank defect in terms of the number of its zero, or close to zero, eigenval-

ues. Note that a rank-deficient matrix is characterized by a cluster of small eigen-

values with a sizeable gap relative to its larger eigenvalues (Hansen 1998, p. 2). If 

such rank deficiency cannot be numerically justified, as in the cases shown in Fig. 

2, the lower part of the eigenvalue spectrum can still expose the presence of ill-

defined frame components but without being able to specify their particular type. It 

is emphasized that NEQ obtained by the same observation technique and modeling 

procedure over the same network – thus carrying equivalent datum content – may 

exhibit different variations in their eigenvalue spectrum as shown in the example of 

Fig. 3. 
 
The type of rank defect is usually deduced from theoretical considerations by tak-

ing into account the parametric modeling and spatial extent of the underlying net- 
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Figure 3. Eigenvalues of unconstrained normal matrices from different weekly combined 

solutions of the SIRGAS network (only the first 19 values are shown). The three 

smallest eigenvalues are indicated in red circles.  

 

work. For example, the normal system obtained from the processing of GNSS ob-

servations in a global network for the simultaneous estimation of satellite orbits, 

ERPs and stations positions, is expected to have a rank defect equal to three which 

corresponds to the three degrees of freedom of the unobserved network orientation. 

On the other hand, the rank defect of GNSS networks with fixed satellite orbits and 

ERPs is theoretically expected to be zero, yet in practice it also appears to be close 

to three as a result of the weak origin definition, especially in networks with non-

global coverage. In both cases we may still end up with non-singular input NEQ 

(e.g. Davies and Blewitt 2000) which need to be properly handled in the context of 

TRF estimation. 
 
The quantitative assessment of frame sensitivity in observed networks by space 

geodetic techniques relies on the concept of the “reference system effect” which 

was introduced by Sillard and Boucher (2001). A geometric-like approach can be 

also used for this purpose by assessing the orthogonality level of the two basic sub-

spaces of the TRF estimation problem: the data-related subspace spanned by the 

rows or columns of the input normal matrix � , and the datum-related subspace 

spanned by the rows of the so-called Helmert transformation matrix that is denoted 

hereafter by G . This essentially corresponds to checking the validity of the funda-

mental equation T
= 0�G  which holds a key role in MC theory of geodetic net-

works (Blaha 1971; Kotsakis 2012). 
 
From a user’s perspective, it is also crucial to investigate the distortion caused by 

additive datum constraints (which are supposedly “minimal”) when the input NEQ 

do not have a proper rank defect. By the term distortion here we mean the differ-

ences in the well-estimable characteristics of a free-net solution and a “minimally-

constrained” solution. These differences reflect the corruption of data-related in-

formation in the constrained solution by the external datum conditions. For exam-

ple, if NNT constraints are used to align a regional GNSS network to ITRF, then 

both the inner geometry and the orientation/scale of the estimated solution could be 
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affected by those constraints. Presumably, one would suspect that this effect is neg-

ligible due to the weakness of frame origin information in the input NEQ, yet to the 

author’s knowledge no actual evaluation of this distorting effect exists in the geo-

detic literature. 
 
In the next sections we look more closely at the above issues through numerical 

examples using weekly SINEX files from the EPN, SIRGAS and APREF net-

works. 

 

3.2 Statistical assessment of frame sensitivity 

The datum defect of a normal matrix �  can be inferred via the covariance matrix 
1( )T −

=Σ G�G  which quantifies the so-called reference system effect, as ex-

plained by Sillard and Boucher (2001). The ill-defined frame components corre-

spond to the large diagonal elements of Σ  in the sense that their values appear 

significantly higher than the usual uncertainty of the geodetic observation tech-

nique at hand. This does not imply, though, that the normal matrix will be rank-

deficient (i.e. singular) in a strict numerical sense. As an example, the reference 

system effect of the same NEQ which were previously analyzed in terms of their 

spectral content (see Fig. 2) is given in Table 1. In all cases the frame origin infor-

mation is weaker than the frame orientation and scale information, as it is should 

be normally expected in such GNSS networks. 
 
A similar assessment of the datum defect can be performed via the weight matrix 

T
=Q G�G  as suggested by Kelm (2003). In this case the ill-defined frame com-

ponents correspond to the smaller diagonal elements of Q , as indicated in the ex-

ample of Table 2. 

 

Table 1. Reference system effect (according to Sillard and Boucher 2001) in weekly �EQ 

of different G�SS networks. The unconstrained normal matrices were recovered 

from the SI�EX files EUR18697.snx, SIR18697.snx and AUS18697.snx, respec-

tively. The values correspond to the square roots of the diagonal elements of the 

CV matrix Σ. The conversion to linear units (for the frame orientation/scale un-

certainty) uses the Earth's radius value R = 6378137 m. 

 EP� SIRGAS APREF 

Origin – x translation (cm) 17.7 8.1 24.6 

Origin – y translation (cm) 15.5 10.9 24.8 

Origin – z translation (cm) 20.1 5.8 24.3 

Orientation – x rotation (mas/cm) 1.84/5.7 0.51/1.6 1.63/5.0 

Orientation – y rotation (mas/cm) 2.36/7.3 0.37/1.1 1.58/4.9 

Orientation – z rotation (mas/cm) 1.55/4.8 0.61/1.9 1.57/4.9 

Scale (ppb/cm) 7.46/4.8 3.94/2.5 6.62/4.2 
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Table 2. Reference system effect (according to Kelm 2003) in weekly �EQ of different 

G�SS networks. The unconstrained normal matrices were recovered from the 

SI�EX files EUR18697.snx, SIR18697.snx and AUS18697.snx, respectively. The 

values correspond to the diagonal elements of the weight matrix Q. �ote that the 

frame orientation/scale weights have been numerically re-scaled by the factor 

1/R2, where R corresponds to the mean Earth radius R = 6378137 m. 

 EP� SIRGAS APREF 

Origin – x translation 113.261 283.619 17.797 

Origin – y translation 90.173 383.297 17.396 

Origin – z translation 115.842 349.593 17.295 

Orientation – x rotation 1761.526 8134.032 401.174 

Orientation – y rotation 354.960 15053.847 426.739 

Orientation – z rotation 2495.045 3330.823 432.638 

Scale 3311.158 9454.131 627.080 

 

3.3 Geometrical assessment of frame sensitivity 

From a geometrical viewpoint the NEQ datum defect is related to the fact that the 

rows or columns of the normal matrix are orthogonal to (some or all of) the rows of 

the Helmert transformation matrix. The latter can be expressed in the standard 

form: 

 

1

2
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1 1
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 (2) 

where the station coordinates refer to approximate values which are close to the 

sought network solution. The rows of G correspond to the fundamental datum pa-

rameters, namely three translations, three rotations and one scale factor. If some of 

these rows are orthogonal to all rows (or columns) of the normal matrix, this signi-

fies complete lack of data information for the respective frame components and the 

obligation to fix them by external constraints during the network adjustment. If the 

NEQ unknowns contain both station positions and velocities, then the fundamental 

datum parameters increase to 14 and the matrix G should be augmented by 7 addi-

tional rows and 3� additional columns in accordance to the linearized expression 
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of the Helmert transformation for time-dependent frames (e.g. Sillard and Boucher 

2001; Altamimi et al. 2002). In the following we restrict our attention to the 7-

parameter case, yet a similar setting can be followed for the more general 14-

parameter case. 
 
In principle, the aforementioned orthogonality check can be carried out via the 

elements of the test matrix: 

 

1 1 1 2 1 7

2 1 2 2 2 7

1 2 7

  

T T T

T T T

T T T

T

m m m
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where { } ( 1,..., ;  3 )i i m m �= =n  denote the columns of the symmetric normal ma-

trix �  and { } ( 1,...,7)i i =g  correspond to the columns of the matrix T
G . Note 

that the elements of the above test matrix are strongly influenced by the significant 

differences among the Euclidean norms for the seven rows of the Helmert trans-

formation matrix; see Eq. (2). This can obscure the appraisal of the datum content 

in the input NEQ and it may under-estimate the orthogonality level between the 

columns of �  and T
G . To detect the frame sensitivity it is therefore better to rely 

on the normalized test matrix: 

 �
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whose elements represent the cosine angles between the vector sets { }in  and { }ig , 

thus always ranging between -1 and 1. The closer the elements of each column in 

the above matrix are to zero, the less information is contained in the normal matrix 

for the corresponding datum parameter. A relevant example is given in Fig. 4 using 

the weekly (unconstrained) NEQ of different GNSS networks. As expected, the 

frame origin parameters show higher orthogonality level in relation to the normal 

matrix than the other datum components. 
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Figure 4. Cosine angles between the seven rows of the Helmert transformation matrix and 

the rows of weekly normal matrices in different G�SS networks: EP� (upper 

plots), SIRGAS (middle plots) and APREF (bottom plots). The unconstrained 

�EQ were recovered from the corresponding weekly solutions for the time pe-

riod 1-7/11/2015. 
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3.4 Spectral assessment of frame sensitivity 

The previous “geometrical” assessment can be equivalently applied in the spectral 

domain by considering the eigenvalue decomposition of the normal matrix, that is 

T
=� U DU . The normalized test matrix �

T
�G  in Eq. (4) can then be replaced by 

a similar test matrix �
T

UG  which employs the eigenvectors { }iu  instead of the 

columns { }in  of the normal matrix. The advantage of this option is that it provides 

the means to analyze the datum content of a NEQ system as a function of its eigen-

values, and identify the frame components whose information is mostly concen-

trated on the weak part of the normal matrix spectrum.  
 
In Fig. 5 we show an example of such a spectral assessment in the EPN network 

using the weekly NEQ that were employed in the previous tests. The cosine angles 

between the rows of the Helmert transformation matrix and the eigenvectors of the 

normal matrix are now reduced in the interval [0,1] (i.e. the angles are considered 

in the range 0°-90° instead of 0°-180°) to allow their visualization in logarithmic  
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Figure 5. Cosine angles between the seven rows of the 

Helmert transformation matrix and the eigenvec-

tors of a weekly normal matrix in the EP� net-

work. Their values are plotted against the associ-

ated eigenvalues of the corresponding eigenvec-

tors. The �EQ were recovered from the combined 

weekly solution for the time period 1-7/11/2015. 
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scale. Some important aspects that can be inferred from this example are summa-

rized below. 
 

- The cosine angles between the vector sets { }ig  & { }iu  have larger 

variations compared to the vector sets { }ig  & { }in  that were shown in 

Fig. 4. This is expected due to the orthogonality of the eigenvector basis 

{ }iu  in the R3� Euclidean space. 

- The major portion of frame origin information is contained in the weak 

part of the normal matrix spectrum, particularly in the eigenvectors cor-

responding to the three smallest eigenvalues.  

- The weak part of the normal matrix spectrum carries information for all 

datum parameters and not just for the frame origin. This information is 

fully blended in the corresponding eigenvectors since the respective co-

sine angles approach the value 1. 

- The information for the frame orientation and scale is more powerful 

than the frame origin in the intermediate and strong parts of the normal 

matrix spectrum, thus revealing their better estimability from the GNSS 

observations. 

 

 

3.5 Assessment of distortion in “minimally-constrained” solutions 

A straightforward way to assess the network distortion from the minimally-

constrained inversion of Eq. (1), due to absence of true rank defect in the input 

NEQ, is to compare the following solutions: 
 
(i) the unconstrained (free-net) solution 

 1ˆ   
U�C o

−

= +X X � u   (5) 

which retains the data information for the network geometry and other frame char-

acteristics that are well estimable by the observational model, and 
 
(ii) the constrained solution from a set of “minimal constraints”, ( )

o
− =H X X c , 

chosen according to the diagnostic analysis of the previous sections, that is 

 ( ) ( )
1

ˆ   
T T

o

−

= + + +X X � H WH u H Wc   (6) 

where W denotes a datum-related weight matrix. If the input NEQ were truly rank-

deficient and the applied constraints fulfill only their datum defect, then the result 

of Eq. (6) is independent of this weight matrix (e.g. Kotsakis 2012, 2013). For the 

cases considered here, however, the normal matrix � is non-singular and the choice 

of W has an impact on the estimated positions. In our following tests this weight 

matrix is chosen sufficiently large (see below) to outweigh the weak frame infor- 
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Figure 6. The APREF G�SS network – the reference stations that were used in the compu-

tation of the weekly ��T solution for our numerical test are shown in blue trian-

gles.  

 

mation in the input NEQ and, thus, to ensure the prevalence of the MC-based da-

tum definition.  
 
The comparison of the above solutions should rely on the position residuals after 

their fitting by an estimated Helmert transformation over all network stations. 

Herein we present a relevant example with weekly NEQ from the APREF network. 

The minimally-constrained solution is computed via the NNT conditions with re-

spect to the IGb08 frame based on the reference stations shown in Fig. 6. The 

weight matrix W is diagonal and it is tuned to an accuracy level of 10-5 m for the 

frame origin fixation. Three different types of transformation models were applied 

for fitting the solutions from Eqs. (5) and (6), namely a shift-only model, a 

shift/rotation model and a full similarity model. The estimated transformation pa-

rameters from each model are given in Table 3, whereas the corresponding residu-

als are plotted separately for each spatial component as shown in Fig. 7. 
 
Our results reveal that the NNT solution is distorted by several mm compared to 

the free-net solution. Most of this unwanted effect occurs in the vertical component 

with residuals up to 3-4 mm, whereas the horizontal residuals are approximately 

two times smaller. Due to the global extent of the APREF network, a uniform scale 

factor is not able to account for these spatial distortions and the post-fit residuals 

remain practically the same after the implementation of all types of transformation 

models (see Fig. 7). The results from analogous comparisons between more weekly 

(or daily) solutions in the same network demonstrated even larger distortions than 

the ones presented herein. 
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Table 3. Helmert transformation parameters between the free-net and ��T weekly solu-

tion in the APREF network. The input �EQ refer to the time period 1-7/11/2015 

and they were extracted from the corresponding weekly SI�EX file after stan-

dard de-constraining. 

 
Tx  

(mm) 

Ty 

(mm) 

Tz 

(mm) 

Rx 

(mas) 

Ry 

(mas) 

Rz 

(mas) 

Scale 

(ppb) 

Shift-only 3.2 10.6 7.4 − − − − 

Shift/rotation 3.2 10.6 7.5 0.007 -0.000 0.001 − 

Full similarity 3.1 10.7 7.4 0.007 -0.000 0.001 -0.05 
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Fig. 7 Post-fit residuals between the free-net and ��T weekly solutions in the APREF net-

work. The results correspond to three different transformation models: (a) shift-only 

model, (b) shift/rotation model and (c) full similarity model. The input �EQ refer to 

the time period 1-7/11/2015. 
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It is emphasized that the aforementioned distortions do not imply an incorrect re-

sult for the NNT-based estimated positions. They just signify the twisting of the 

data information towards any subsequent analysis of the adjusted network, and the 

fact that we do not get a genuine minimally-constrained solution. 

 

 

4. Removal of frame information from input NEQ 

4.1 Mathematical formulation 

In this section we consider the problem of conditional conversion of a full-rank 

normal system to an “equivalent” rank-deficient form which involves the same un-

known parameters, that is 

 ( )   

o
− =� X X u     →    ( )   

o
′ ′− =� X X u  (7) 

For our purpose the initial system ( ,  � u ) refers to the NEQ obtained by the proc-

essing of space geodetic data during a least-squares network adjustment or, alterna-

tively, to the NEQ extracted from a SINEX file after removing the additive datum 

constraints based on stated information for the stored solution. The above conver-

sion is vital in the context of TRF estimation under the MC framework since the 

aforementioned NEQ do not always exhibit the required datum singularity. In such 

cases it is essential to be able to reconstruct a singular normal system ( ,  ′ ′� u ) 

which conforms to particular properties as described below. 
 
Filtering of selected datum parameters. The sought singularity must be attributed 

to the removal of (weak) datum information that resides in the initial normal ma-

trix. Hence, the following orthogonality condition needs to be fulfilled: 

   

T
′ = 0� E  (8) 

where E is formed by selected rows of the Helmert transformation matrix G from 

Eq. (2) in the underlying network. These rows correspond to ill-defined datum pa-

rameters which we intend to define anew via minimal constraints either in a single 

network adjustment or in a NEQ stacking/combination procedure. 
 
The fulfillment of Eq. (8) implies the singularity of ′�  and the fact that its rank 

defect will be at least equal to the number of rows of E (Blaha 1971, p. 6). In order 

to ensure that no additional rank defect will exist in the reconstructed NEQ, the 

new normal matrix should be obtained by a suitable projection of the initial normal 

matrix as follows 

 ( )  

1
  ( )

T T −

′ = −� I �E E�E E �  (9) 

(a proof of this equation is given in the appendix). Obviously, this matrix complies 
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with the condition in Eq. (8) and it leads to a singular normal system whose solu-

tions belong in the orthogonal complement of the column space ( )T
ℜ E  using as 

metric the original matrix � itself.  
 
The reconstructed normal matrix from Eq. (9) is equal to the pseudoinverse 

(Moore-Penrose inverse) of the singular covariance matrix 

 ( ) ( ) 

1 1 1
  ( ) ( )

T T T T− − −

= − −XΣ I E EE E � I E EE E  (10) 

which quantifies the “inner accuracy” of the unconstrained solution from Eq. (5), 

after having removed the influence of the datum components associated with the 

rows of E. The proof of 
+

′ = X� Σ  is straightforward via simple algebraic opera-

tions that can confirm the validity of the four basic properties of the pseudoinverse; 

see Koch (1999, p. 53). 
 

Upholding the input �EQ information. The initial system ( )
o

− =� X X u  car-

ries the data information for the network geometry and perhaps for elements of the 

target frame that are well-estimable by the observational model and do not need to 

be externally defined by additional constraints. In order to preserve this informa-

tion, the unconstrained solution from Eq. (5) should satisfy the reconstructed NEQ 

in the sense that 

 ( ) 

1

ˆ   
U�C o

−

′ ′− =

�������

� u

� X X u   (11) 

By taking into account Eq. (9), the above condition leads to the projection formula: 

 ( )  

1
 ( )

T T −

′ = −u I �E E�E E u  (12) 

which defines the constant vector of the reconstructed NEQ in compliance with the 

filtered datum parameters. 
 
General solution of the reconstructed �EQ. It is deduced without difficulty that 

any solution of the reconstructed NEQ satisfies the general transformation equa-

tion: 

  

ˆ ˆ    
U�C

T
′ = +X X E θ  (13) 

where the (unknown) parameter vector θ  corresponds to the filtered datum com-

ponents. The last equation represents the well known S-transformation within the 

solution space of ( )
o

′ ′− =� X X u , and it reflects the information invariance be-

tween the initial and the reconstructed normal systems. The solution ˆ
′X  is com-

putable by a suitable set of minimal constraints that can be chosen to overcome the 
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rank defect of ′� , and it will differ from the unconstrained solution of the initial 

system only in terms of the datum-related parameters causing the singularity of the 

reconstructed NEQ. An overview of the preceding CDR framework is given in Ta-

ble 4. 
 
Connection with other frame filtering approaches. Some aspects of the previous 

procedure have appeared in the geodetic literature under different viewpoints, all of 

which are more or less complementary to our frame filtering methodology. Specifi-

cally the projection matrix that is used in NEQ reconstruction according to Eqs. (9) 

and (12), i.e. 

 1
  ( )

T T −

= −F I �E E�E E  (14) 

is exactly the same projector with the one introduced by Sillard and Boucher 

(2001) for assessing the reference system effect in geodetic networks. Their alge-

braic approach is applied entirely in the stochastic domain by decomposing the CV 

matrix of a (non-constrained) solution to an internal noise component and a datum-

related component. Its main objective is to infer the frame sensitivity of space geo-

detic techniques and it can be used as a diagnostic tool for datum defect analysis in 

NEQ systems, as it was already explained in Sect. 3.2. 
 
In a different context, Rebischung (2014, pp. 186-187) derived Eq. (9) as a recov-

ery tool to build the input normal matrix from the inverse CV matrix of a mini-

mally-constrained solution in the absence of explicit knowledge for the datum con-

straints. This is relevant for cases of analysis centers (ACs) which do not provide 

the normal matrix of the applied constraints for their reported solutions in SINEX 

format (i.e. SOLUTION/MATRIX_APRIORI block), thus making impossible the 

reconstruction of the original NEQ by the standard de-constraining. Indeed, Eq. (9) 

may be used for this purpose under the assumption that the non-reported con-

straints correspond to minimal constraints, and by setting the matrix E to be com-

pliant with the theoretical singularities of the input normal matrix. Such an ap-

proach was exploited by Rebischung et al. (2016) in the pre-processing of daily 

solutions from the IGS ACs to enforce the proper rank defect towards their combi-

nation for the IGS contribution to the ITRF2014 (Altamimi et al. 2016). This cor-

rection step is necessary since the (unconstrained) normal matrices from several 

ACs do not show the three expected orientation singularities, thus causing a risk of 

unwanted deformations in the combined IGS solution for the station positions and 

Earth rotation parameters. It is noted, though, that to avoid any distortion in the 

TRF estimation process the corresponding (daily) normal vectors should also be 

properly reconstructed according to Eq. (12); see also Table 4. 
 
Lastly, it is worth mentioning that the CDR methodology of the present study is 

completely equivalent to the “NEQ augmentation” methodology which was de-

scribed in Bloßfeld (2015, p. 31). According to his approach, the removal of frame 
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information from a normal system can be implemented by introducing infinitesimal 

similarity transformation parameters which inflict the expected datum defect in the 

TRF estimation process. An example for the implementation of this approach can 

be found in Bloßfeld et al. (2016), and its formal equivalency to our NEQ recon-

struction algorithm is demonstrated in the appendix. 

 

Table 4. Comparison between the initial (full-rank) and the reconstructed (singular) �EQ 

according to the CDR filtering procedure. 

 Before CDR After CDR 

System of normal 

equations 

( )
o

− =� X X u  

Initial NEQ without rank defect 

( )
o

′ ′− =� X X u  

Reconstructed NEQ with "proper"  

rank defect 

θ : ill-defined datum parameters to be fully 

removed from the NEQ system   
Helmert transfor-

mation matrix and 

handling of datum 

parameters 

      
 } 

} 

=

⎡ ⎤
⎢ ⎥
⎣ ⎦ ��

E θ
G

E θ
   

�θ :  well-estimable datum parameters from 

the network data 

Evidence of frame 

information  

in the NEQ system 

  

T
≠ 0� E  

  

T
≠ 0�� E  

  

T
′ = 0� E  

  

T
′ ≠ 0�� E  

Filtering  

of selected datum  

parameters 

 

1
( )( )

T T −

′ = −� I �E E�E E �  

 

1
( )( )

T T −

′ = −u I �E E�E E u  

Pseudo minimally constrained 

1ˆ ( )
T

o

−

= + +X X � Ε Ε u  

Minimally constrained 

1ˆ ( )
T

o

−

′ ′ ′= + +X X � Ε Ε u  

�ote: instead of E, any other MC matrix for fixing the datum parameters θ  

can be used in the above estimators 

NEQ  

solution 

Unconstrained 

1
ˆ

U�C o

−

= +X X � u  

S-transformation 

ˆ ˆ

U�C

T′ = +X X E θ  

Other  

properties 

“Inner network accuracy”  

(to be preserved by CDR)  

1

1 1

 ( )  

 ( )

( ) 

( )

T T

T T

−

− −

= −

× −

×
X

Σ I E EE E

� I E EE E

 

Equivalent computation of the  

reconstructed NEQ 
+

′ =
X

� Σ  

( )ˆ

U�C o
′ ′= −u � X X  
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4.2 Extended use of CDR 

Thus far the rationale of this study has relied on two basic presumptions: (a) the 

non-singularity of the input normal matrix � , and (b) the need to remove the ill-

defined datum information from the initial system ( )
o

− =� X X u . Herein we 

briefly discuss the relaxation of both of these presumptions so that more flexibility 

is added to the CDR tool for handling TRF estimation problems. 
 
The first generalization is related to the filtering of any subset of datum parameters, 

regardless how well these parameters are resolved within the input NEQ. This ex-

tension is directly applicable as it does not require any modification of the funda-

mental equations (9) and (12). The matrix E  that is used in the CDR algorithm is 

not actually restricted by any theoretical conditions – other than having linearly 

independent rows – and it is free to refer to any estimable quantities that have an 

implicit dependence on the primary parameters X of the normal system. In fact, we 

may even select this matrix to coincide with the full Helmert transformation matrix 

( =E G ) in which case the input NEQ will be completely de-stripped of their da-

tum content without losing their geometrical information. This option can be quite 

helpful in TRF estimation via intra/inter-technique NEQ combination (e.g. Seitz et 

al. 2012; Glaser et al. 2015), as it allows to filter out beforehand the datum content 

of the input data which we do not want to affect the final combination solution.  
 
The second generalization refers to cases where the normal matrix �  is already 

singular and its rank defect is related to a subset of datum parameters, say 1θ . The 

CDR filtering can still be used to remove the information for another subset of da-

tum parameters, say 2θ , according to the modified expressions:  

 ( )    ( )

T T −

′ = −� I �E E�E E �  (15) 

and 

 ( )   ( )

T T −

′ = −u I �E E�E E u  (16) 

where the rows of the matrix E will correspond to the datum parameters of the sec-

ond subset. The new element here is the presence of the generalized inverse 

( )T −

E�E  instead of the regular inverse 1( )T −

E�E . The latter does not necessar-

ily exist since the input normal matrix is supposed to be singular.  
 
The projectors in Eqs. (15)-(16) lead to a new normal system with larger rank de-

fect which is related to both subsets of datum parameters. The orthogonality condi-

tion with respect to 2θ , that is  

T
′ = 0� E , is verified in view of the fundamental 

property ( ) ( )T T T T−

=E E�E E�E E  (e.g. Koch 1999, p. 51) while the orthogo-

nality to 1θ  is guaranteed by the fact that the normal matrix �  is already orthogo-
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nal to these datum parameters. Note that both ′�  and ′u  remain invariant to the 

actual choice of generalized inverse in Eqs. (15)-(16) due to the well known invari-

ance of the symmetric matrix ( )T T −

E E�E E .   
 
Moreover, in line with Eq. (11), the preservation of data information in the recon-

structed NEQ is ensured by the condition 

 ( ) 

*ˆ   
o

−

′ ′− =

�����

� u

� X X u   (17) 

where *
ˆX  is an arbitrary solution of the (singular) normal system 

( )
o

− =� X X u . Indeed, if we substitute ′�  and ′u  from Eqs. (15)-(16) into Eq. 

(17), then we get 

 ( ) ( )  ( )   ( )T T T T− − −

− = −I �E E�E E � � u I �E E�E E u   (18) 

which holds true considering the reproducing property  

−

=�� u u  from the gener-

alized inversion theory of normal systems (e.g. Kotsakis 2012, appendix). 

 

 

5. Summary – Conclusions 

The rank defect of the input NEQ is a crucial element for the proper handling of 

TRF estimation problems under the minimal-constraint framework. This required 

singularity does not always exist in the unconstrained NEQ which are recovered 

from SINEX files using the stated information for the stored solutions. The same 

setback also occurs with the NEQ formed during the least-squares processing of 

space geodetic data due to the datum information that is often carried by various 

modeling choices or software-dependent procedures (Davies and Blewitt 2000, 

Kelm 2003). To verify the presence of this problem, and also to facilitate the as-

sessment of the datum content of normal systems in geodetic networks, a number 

of (algebraic, statistical, geometrical and spectral) diagnostic tools have been stud-

ied in this paper; see Sect. 3.  
 
To avoid distortion effects in minimally-constrained networks, the input NEQ 

should be pre-filtered by stripping them of their datum content, yet without affect-

ing their geometrical information, according to the CDR algorithm given in Sect. 4. 

This approach serves essentially a similar purpose as the loosening transformation 

(Blewitt 1998) or the Helmert-based stacking model (Altamimi et al. 2002), both of 

which have been used in the context of TRF estimation for the optimal combina-

tion of individual solutions from different sub-networks, measurement epochs and 

observation techniques. In contrast to these tools which operate at the “solution 
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level”, the CDR filtering is applied at the “NEQ level” and guarantees the rank de-

fect with regard to datum parameters that will be handled under the MC setting, 

without the need to employ intermediate covariance matrices or other auxiliary 

transformation parameters. Note that, even in combination schemes at the solution 

level, the CDR is still a desirable and useful tool that can ensure the availability of 

truly distortion-free solutions (from corresponding filtered NEQs) to be assimilated 

in the TRF estimation process. 
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Appendix 

The equivalency between the CDR filtering that was presented in Sect. 4.1 and the 

related methodology for deriving datum-free NEQ according to Bloßfeld (2015, p. 

31) will be demonstrated here. 
 
Let us consider a normal system ( )o− =� X X u  that is obtained from the analysis 

of space geodetic observations for estimating the station positions X  in a geodetic 

network with respect to a target frame. It is assumed that this system has full rank 

due to datum information which is present in the form of (unknown) minimal con-

straints. This setting can cover two different cases of “input NEQ” with practical 

relevance for TRF estimation problems, namely: 
 
(i) minimally-constrained NEQ recovered from SINEX files which do not report 

the information for the applied constraints in the stored solutions; or 

(ii) de-constrained NEQ recovered from SINEX files which report the information 

for the applied constraints in the stored solutions. 

The former case is considered in Bloßfeld (2015) and Rebischung (2014), yet the 

latter is also of interest as it could require the implementation of an additional da-

tum removal scheme (see the discussion and examples in Sect. 2). 
 

The invertible normal system ( )o− =� X X u  can be algebraically associated with 

a “fictitious” system of observation equations, in the sense that 

 T
=� A PA  ,   T

=u A Pb   (A1) 

where A , P  and b  stem from a full-rank linear Gauss-Markov model 

 ( )o= − +b A X X v  ,      2 1
 ~ ( ,  )σ

−

0v P   (A2) 

The selective removal of datum information from the normal system can be im-

plemented by introducing an artificial frame-related rank defect in the above sys-

tem of observation equations. This is achieved via a simple re-parameterization 

using the Helmert transformation model 

 T
′=X X + E θ   (A3) 

where the elements of θ  (and the rows of the transformation matrix E ) corre-

spond to the datum parameters that we wish to filter out. By substituting Eq. (A3) 

into Eq. (A2) we obtain the extended system of observation equations 

 ( ) T
o

′= − + +b A X X AE θ v  ,      2 1
 ~ ( ,  )σ

−

0v P   (A4) 

which, in turn, is linked with the augmented normal system 

    

T

T

o
′⎡ ⎤ −⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

X X u� �E
=

θ EuE� E�E

  (A5) 
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Obviously the above system retains the same information about the network’s 

geometrical characteristics as the original system ( )o− =� X X u , but it is singu-

lar since the parameter vectors ′X  and θ  cannot be separately estimated from the 

same observations.  
 
If we reduce the (unknown) datum parameters from Eq. (A5), then the following 

“filtered” normal system is derived 

 ( )( )1 1( )   ( )T T T T
o

− −

′− − −� �E E�E E� X X = u �E E�E Eu   (A6) 

or, equivalently 

 ( ) ( ) ( )1 1( )   ( )T T T T
o

− −

′− − −I �E E�E E � X X = I �E E�E E u   (A7) 

The last equation is identical to the reconstructed singular NEQ according to Eqs. 

(9) and (12) of the present paper. 

 


