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Abstract: Crustal deformation analysis in seismogenic areas is one of the most important 

applications of GNSS. In the last twenty years, the GNSS technology has opened new per-

spectives in this field allowing the estimation of the crustal deformation at different scales 

both in time and in space. 

Tectonic deformations can be reliably estimated either at regional and fault scale. This al-

lows the analysis of the different phases of the seismic cycle. Particularly, co-seismic and 

post-seismic deformations can be properly evaluated. Also, recent studies aim at studying 

the inter-seismic phase giving important insights in the dynamic of the crust in seismic 

prone areas. 

These studies are commonly based on the analysis of time series from GNSS permanent 

stations. In this paper, a new method for filtering these data is presented and a case study 

based on the FReDNet data is illustrated. 

 

 

1. Introduction 

The analysis of crustal deformations plays an important role in studies related to 

the whole seismic cycle. Co-seismic, post-seismic and inter-seismic crustal defor-

mations can be reliably estimated using daily coordinates time series from GNSS 

permanent stations. Many seismogenic areas are monitored in this way. As an ex-

ample, one can mention the Southern California Integrated GPS Network (SCIGN) 

that has been completed in 2001 and consists of more than 250 stations (Figure 1, 

Hudnut et al, 2002).  
 
GNSS permanent stations for deformation analysis are carefully monumented to 

properly detect crustal deformations. Deep-drilled brace are frequently used in or-

der to couple the GNSS antenna to ground in a stable way (Figure 2). 
 
In Italy, the Istituto Nazionale di Geofisica e Vulcanologia (INGV) has established 

the Rete Integrata Nazionale GPS (RING) with more than 180 stations (Figure 3, 

Avallone et al., 2010) and the Istituto Nazionale di Oceanografia e di Geofisica 

Sperimentale (OGS) has implemented the FReDNet in the North-East Alpine area 

(Figure 4, Zuliani et al, 2002). 
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Figure 1. The SCIG� network (status September, 2000) 

 

  

Figure 2. The deep drilled brace 

 

Besides a careful monument setting, a detailed data analysis must be carried out in 

order to properly estimate the crustal movements. 

The most common parametric model that is used in analysing the coordinate com-

ponents 
1 2 3

( ,  ,  ) ( ,  ,  )X x x x � E Up= =  of the GNSS daily time series is  
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Figure 3. The RI�G network 

 

 

Figure 4. The FReD�et network 
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This model has been proposed by different authors (see e.g. Nikolaidis, 2002). The 

linear term accounts for the station velocity while harmonic components are in-

cluded to model annual, seasonal and higher frequency time dependent phenomena. 

Possible discontinuities due to instrument/software and/or reference frame changes 

are modelled by the terms containing the Heaviside function H(⋅). By least squares 

adjustment, the model parameters are estimated assuming different models for the 

coloured noise ( )
i
ε t . The most common stochastic models for ( )

i
ε t

 
are those pre-

sented in Williams (2003) with further implementations in Williams (2008). In 

these papers ( )
i
ε t  is assumed to have a power spectrum that depends on the fre-

quency  f  according to the formula 

 ( ) k
P f fª  (1.2) 

Based on the value of  k,  different stochastic process can be described with this 

model. If k is in the range  -1 ≤ k ≤ 1, ( )
i
ε t  is a stationary stochastic process. For  

|k| >1 ( )
i
ε t  is non-stationary (Mandelbrot 1967). Particular cases are for  k=0, k=-1 

and  k=-2  for which the ( )
i
ε t  process is, respectively, a White Noise process, a 

Flicker Noise process or a Random Walk process.  
 
A different time-domain approach has been proposed by Barzaghi et al. (2004) 

where ( )
i
ε t  is assumed to be a second order stationary process, ergodic in the co-

variance. 
 
In this case, the parameters estimation is done in a two steps procedure. The first 

least squares iteration is accomplished by considering that ( )
i
ε t  is White Noise. 

The ( )
i
ε t  least squares residuals are then computed and their stationarity is tested 

using the generalized KPSS-test (Hobijn et al., 2004). If stationarity condition is 

satisfied (which currently happens in the authors’ experience when removing the 

linear, annual and semi-annual terms in (1.1)), the empirical auto-covariance of 

( )
i
ε t  is estimated and then modelled with a proper positive definite model func-

tion. Least squares adjustment is then repeated using the derived covariance struc-

ture.  
 
Furthermore, using this concept, collocation can be applied for filtering the residu-

als ( )
i
ε t . This can be done in order to detect and describe possible high frequency 

effects that are present in the GNSS coordinates time series (Borghi et al., 2016). In 

the following this filtering approach is detailed and applied to GNSS coordinate 

time series of the FReDNet network.
 

 

2. Filtering the GNSS time series 

The filtering procedure of the GNSS coordinate time series that is proposed in this 

paper is developed in subsequent steps. At first, a usual outliers rejection is set up 

and known discontinuities due to e.g. instrumental changes are removed (see Fig-

ure 5). 
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Figure 5. Discontinuities in G�SS time series 

 

The parametric model (1.1) is then estimated assuming White Noise behaviour of 

( )
i
ε t . Least squares residuals are then checked for stationarity by means of KPSS 

test. As already stated, using a proper parametric model stationarity of the residuals 

is ensured. The empirical auto-covariance function is then estimated and fitted with 

a proper model covariance function, i.e. a positive definite function, as in Figure 6. 

 

 

Figure 6. The least squares residuals, the empirical covariance function and the best-fit 

model 

 

The final estimate of the model parameters is then accomplished in a further least 

square step that is performed using the proper covariance structure as defined by 

the model covariance function. Thus, the parametric model is optimally estimated 

taking into account the existing time correlations (see Figure 7). 
 
Starting from the second step least squares residuals, a filtering procedure can be 

applied. We assume that the residuals ( )
i
ε t  can be modelled as the sum of a time 

correlated weakly stationary signal ( )
i
s t  and a white noise (uncorrelated) compo-

nent ( )
i
n t , independent from  ( )

i
s t  

 ( ) ( ) ( )  1,2,3
i i i
ε t s t n t i= + =  (2.1) 
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Figure 7. The best-fit parametric model 

 

As already pointed out, under these hypotheses, the empirical covariance function 

of ( )
i
ε t  can be estimated and modelled. Collocation filtering method (Moritz, 

1980) can be applied to the residuals in order to estimate the signal component as  

  

2 1

, 1

ˆ ( ) (| |) [ ] ( )  1,2,3

�

i k n kj j i

j k

s t C t t C σ I ε t i
-

=

= - + =Â  (2.2) 

The filtered component allows defining some coherent behaviour of the residuals 

that could be related to some crustal deformations (see Figure 8). 

 

 

Figure 8. The least squares residuals and the filtered signal 

 

Although this filtering procedure is quite effective, a further smoothing could be 

required to enhance the low frequency components of the filtered signal. It is in 

fact expected that possible inter-seismic crustal deformations have a smooth behav-

iour in time. In order to enhance the low frequency component in ˆ ( )
i
s t , a moving 

average operator can be applied. As it is well known this is equivalent to low pass 

filtering in the frequency domain (Bracewell, 1986).  
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This low-pass filtering procedure can be accomplished by kriging moving average 

(Wackernagel, 2003). We considered an amplitude of the sliding time window 

equal to twice the correlation length of the covariance function ( )C ◊

 
of ˆ ( )

i
s t  (the 

correlation length is the distance at which the covariance function is half its value 

in the origin). The mean value of the signal over this sliding window is computed 

as 

 

1

ˆ ˆ ( )  1,2,3

�

s j i j

j

m ω s t i

=

= =Â  (2.3) 

where �  is the number of ˆ ( )
i
s t

 
values in the window and the 

k
ω  weights are 

given as the solution of the system 
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 (2.4) 

The low pass-filtered signal is thus smoother than the original values as it is shown 

in Figure 8 (green line).  
 
By using such regularized residuals, analyses on possible transient crustal deforma-

tions can be performed effectively since most of the noise sources have been elimi-

nated from the ( )
i
ε t  residuals. In the following section, the application of this pro-

cedure to the FReDNet GNSS time series is discussed. 

 

 

3. The FReDNet case study 

The FReDNet network, as already mentioned, is a GNSS network which has been 

established for estimating the crustal deformation in the Eastern Alpine area. Most 

of the stations have been recording data for a long time period. In our analysis, we 

selected thirteen stations that have more than three years of data. They are plotted 

in Figure 9 (red stations) together with those having a shorter acquisition period 

(white stations). 
 
The filtering procedure described in Section 2 has been applied to the coordinate 

components of each station and the filtered residuals in (2.3) have been estimated. 

In order to investigate if spatially correlated phenomena can be seen in these val-

ues, the Principal Component Analysis (PCA) has been applied (Jolliffe, 2002). 

This analysis has been performed on the horizontal components only. For each 

component, the following matrix k
Y  has been set up 
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Figure 9. The stations selected for the analysis (in red) 
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where  k  is the component index (k=1 for the North component and for  k=2 for 

the East component), p is the number of considered stations and �  the number of 

days in the time series (�>p). By Singular Value Decomposition (SVD) of k
Y  one 

can get 

 ( )k k k k t
Y U L V=  (3.2) 

where Uk  and Vk  are suitable orthogonal matrices and Lk  is a diagonal matrix hav-

ing dimension equal to the rank  r  of k
Y . The columns of Uk  and Vk  are called 

left and right singular vectors for k
Y  and the diagonal elements in Lk  are called 

singular values of k
Y . 

 
By virtue of (3.2), one can write for each component of (3.1) 

 

1

r
k k k k
ij im m jm

m

y u l v

=

=∑  (3.3) 
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Also, by considering only the first most relevant  m<r  singular values one can ob-

tain the approximation of the elements of k
Y  as 

  

1

( )

m
k m k k k
ij in n nj

n

y u l v

=

=Â�  (3.4) 

The PCA is intimately related to SVD of k
Y  since it can be proved that Uk, Vk and 

Lk  define also a possible spectral decomposition of the covariance matrix of k
Y . 

Thus, by considering the larger m singular values one “explains” most of the vari-

ability contained in the covariance matrix of k
Y . In turn, by (3.4) one can also give 

an estimate of the signals implied by these singular values and see how they repro-

duce the original k
ijy  in (3.1). If some of the k

ijy  are properly reproduced using the 

selected larger singular values, one can also check if they are spatially clustered. In 

this way, by applying this analysis, one can find cluster of stations (if any) that 

mainly contribute to the overall variability. Since the signals considered in (3.1) 

refer to coordinate variations in time, this means that by virtue of this approach 

clusters of stations with “highly” variable coordinates can be found. Once we are 

able to detect these clustered stations, a cross-check can be performed with known 

seismic events and/or known fault systems which can account for this “high” coor-

dinates variability. 

 

 

Figure 10. The PCA singular values for the considered FReD�et stations  

(�orth component on the left, East component on the right) 
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The PCA analysis on the selected stations led to the singular values that are plotted 

in Figure 10 for the North (left panel) and the East (right panel) components. 
 
It can be seen that the first two values in each component are much larger than the 

remaining (this is particularly true for the North component). If we consider only 

these values, the signal in (3.4) can reproduce in a very detailed way that of one 

station only, namely the signal of the CANV station. In Figure 11, the CANV sig-

nal and its approximation (3.4) obtained with the first singular value are repre-

sented: the agreement of the two signals is striking. 

 

 
Figure 11. The PCA analysis on the CA�V station signals (blue=original values; 

red=PCA signal) 

 

The same doesn’t hold for the remaining stations. As an example, the signals of the 

NOVE station are displayed in Figure 12.  

 

 
Figure 12. The PCA analysis on the �OVE station signals (blue=original values; 

red=PCA signal) 

 

Thus, the main variation in the covariance matrices is then given by the CANV 

station. This means that, in the analysed period, this station has highly varying co-

ordinates. In recent studies, it has been proved that this variability is given by a 

North 

days 

East 

days 

day

North East 

day
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local effect related to groundwater storage in the Cansiglio plateau area (Devoti et 

al., 2015). Hence, the proposed analysis proved to be effective since one physical 

phenomena was spatially related to a given station. 
 
If we now remove the CANV station and repeat the same analysis on the twelve 

remaining stations, we have no sharp differences among the singular values. The 

filtered signals based on the larger singular values don’t cluster so clearly in a spe-

cific area. There are however some (weak) indications of a better fit between the 

original signals and the filtered ones (using only the two larger singular values in 

each component) in the SE area (see Figure 13) where an earthquake occurred on 

December 6th, 2011 (the Gradisca d’Isonzo 0.8-magnitude seismic event).  

 

 

Figure 13. The Gradisca d’Isonzo area and the FReD�et stations selected by the PCA 

analysis 

 

Figure 14. The TRIE (left panel) and MDEA (right panel) filtered East component residu-

als and the Gradisca d’Isonzo seismic event (blue line) 
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If the original signals of the stations clustered in the PCA analysis are inspected, 

one can see that on that date, some sharp variations are present. As an example, the 

East components of MDEA and TRIE (which are the closest stations to Gradisca 

d’Isonzo) are plotted in Figure 14. On December 6th, 2011 (blue line), they both 

display a common high signal variability. 

 

 

4. Conclusions 

In the last twenty years, GNSS technology has opened new perspectives in the 

geophysical investigations. Particularly, the crustal deformations can be nowadays 

estimated with high accuracy and precision. In this respect, an invaluable role is 

played by the GNSS permanent stations designed for monitoring crustal move-

ments. The analysis of the coordinate time series allows describing the entire seis-

mic cycle in seismogenic areas. The filtering procedure that has been designed in 

this paper proved to be effective and able to spatially cluster permanent stations 

having common behaviour. In the FReDNet case study, two different physical phe-

nomena were identified. In the first analysis step, a groundwater storage effect in 

the Cansiglio area has been evidenced. The subsequent analysis allowed identify-

ing a cluster of stations related to a 0.8-magnitude seismic event in the Gradisca 

d’Isonzo area. Further investigations are needed to prove that this procedure can 

reveal other geophysical relevant phenomena related to the inter-seismic phase 

such as, e.g., aseismic transient slip events.  
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