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Summary: Least squares models for line fitting are presented and discussed. Emphasis is 

given on simplicity, clarity and ease of implemented accurate algorithms while some refer-

ences to geodetic and surveying applications are mentioned. Analytical formulation is ob-

tained using suitable equation forms, especially when data points have different precision, 

as happens with the so called EIV or total least square models. Special cases are investi-

gated and measures of precision are also given. A new iterative algorithm is developed, 

called here the Modified Mixed Model, using the normal line form and based on a slight 

modification of the general adjustment model. By means of well-known data in the litera-

ture, the algorithm is tested and the results show full compatibility compared to other ex-

isted models and computational techniques.  

 

Key words: line fitting, best fit, least squares, EIV models, total least squares, modified 

mixed model. 

 

 

1. Introduction 

The well-known problem of fitting a straight line to scattered data has been exten-

sively studied and concentrated a great amount of literature over a century. The 

emphasis is giving according to the specific issue, experiment or application in var-

ious scientific fields, in conjunction with the functional and stochastic model of the 

related parameters and variables.  

Certainly the presented models in this paper are suitable in almost all scientific 

fields. However, we underline some of the geodetic and surveying engineering ap-

plications, such as cadastral, GIS and map related works, where very often one is 

facing the problem to constrain points, expressed by coordinates, intended to be on 

a straight line representing e.g., a border or a street axis (e.g., Harvey 2009).  

It is common in geodetic sciences to express points by orthogonal (Cartesian) co-

ordinates, for their benefits in mathematical modeling and data processing. Grid or 

map coordinates have been recorded in catalogues and/or data bases, referred to 

maps, deposited plans, land redistributions and similar products or studies. Crucial 
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points are e.g., boundaries and marks of lots, private and public land parcels since 

they describe the geometry of an area and other important features. Such collinear 

points in theory (the plan as model) have to be coordinated and implemented or 

controlled in practice any time needed. 

In general, the determination of point coordinates needs suitable measurements, 

such as angles, distances, azimuths, height differences, GPS/GNSS data and a ref-

erence frame that is accessed through included control points. In addition, coordi-

nates can be produced by digitizing or scanning maps, images or by any other spe-

cific measuring procedure. The derived coordinates are subject to errors and char-

acterized by uncertainties due to the unavoidable random errors, possibly existed 

systematic errors and even due to the less frequently outliers or mistakes. There-

fore, their quality or accuracy has to be described.  Usually, the quality is given in 

terms of precision or repeatability, i.e. by standard deviations, varying from a few 

mm to a few cm in the everyday engineering practice. It is acceptable and realistic 

in most of the cases to realize point coordinates as uncorrelated measurements, ei-

ther directly or indirectly obtained, although correlations could be also included, if 

for instance, a very high accuracy is demanded. 

Stand alone or special GIS software take care of best fitting algorithms. Least-

squares criterion and/or robust techniques are usually applied, the latter mostly 

used in limiting the influence of outliers (e.g., Kiryati and Bruckstein 1992).  

In this paper, we will start with a review of the standard least squares approaches 

based on the known Gauss-Markov model (GMM) for comparison reasons and 

completeness. Next, we will proceed on with a slight modification of the general or 

mixed least-squares model, called here MMM (Modified Mixed Model). On the 

other hand, the choice of the line equation form will be examined and some re-

marks against other existed models and techniques will be quoted as well. Though 

the idea of MMM is not new, as it is based on the known Gauss-Helmert Model 

(e.g., Jefferys 1980, Lybanon 1984, Dermanis 1987, Sneew et al. 2015), the MMM 

will be presented here by an easy and understandable layout. The MMM will be 

applied also using the normal line form, an algorithmic approach that to the au-

thor’s knowledge is presented for first time. 

The equation of a line can take different forms. Among them the most representa-

tive being the slope-intercept y ax b
α α

= +  and the general or standard 

formAx By C
α α

+ =  with the latter expressed also in the normal equation form   

x cos t y sin t r
α α

+ =  and inversely (Fig.1), e.g.  A=cost, B=sint and C=r.   
 

Estimating line parameters from data points that are subject to errors some limita-

tions and constraints have to be taken into account as far as the suitability and ef-

fectiveness of the functional model. A drawback of the slope-intercept equation is 

that it is not possible to describe vertical lines (x=constant) or when the intercept 

takes big values as the line tends to the vertical position, with uncontrollably com- 
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Fig. 1. Data points and line parameters 

 

putational problems. An alternative to such dangerous cases would be the use of 

the equation x cy d
α α

= + , something reasonable in a few isolated cases. In con-

trast, when many best fit lines have to be determined as in land surveying projects, 

e.g. the determination of street axes in a city plan, a considerable number of them 

may be parallel or almost parallel to the y-axis. Due to homogeneity reasons the 

general line equation, either directly or through the normal form determined should 

be the preferable and right choice.  
 
In any functional model, we distinguish the unknown (but fixed) line parameters, 

e.g., (a, b), (A, B, C) or (t, r) and the unknown (but fixed) variables x ,y
α α

. All of 

them represent unknown (but fixed) true values that have to be properly estimated. 

Each one of x ,y
α α

 or both of them, can be treated as random variables, that is as 

observables, depending on the specific problem and the nature of the variables.  
 
Given a number of data points (x1, y1), (x2, y2), ..., (xn, yn), considered in general as 

observations, the functional relation of the fitting line has to be determined. This 

demands for the estimation of the line parameters, e. g. ˆâ, b , where the adjusted 

points ( i i
ˆ ˆx , y
α α

) are lying on the best fit line, i.e., 
i i

ˆˆˆ ˆy ax bα α

= + . We underline that 

the stochastic model of the observational errors is considered the same as that of 

their associated observations.  
 
Given a functional Least-Squares (LS) model the estimation of parameters can be 

obtained without the need of a priori statistical hypothesis for the behavior of er-

rors. Naturally we expect that errors have small size and tend to cancel out in many 

repetitions of the observations. However, it is significant to account for their con-

tribution on the estimated parameters and therefore some suitable hypotheses are 

needed. This is possible if we assume that the errors are random (stochastic) vari-

ables with zero mean for the infinite sample space (Expectation) and have a known 

or approximately known covariance matrix. With this stochastic model the applica-
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tion of the error propagation law, called better the propagation law of covariances, 

is enabled and the estimation of covariance matrices of the estimated or adjusted 

parameters is achieved.  In addition, if the random errors follow the normal (Gauss) 

distribution, the parameter estimates (not their estimated variances) are identical to 

those derived by the Maximum Likelihood Method. 

 

 

2. Line fitting with one observable parameter 

Considering one observable parameter, e.g. y
α

, the ‘slope-intercept’ form 

y ax b
α α

= +  is used, where the slope is expressed by the parameter a (a = tanω, ω 

reckoning anticlockwise from x-axis to the line, Fig.1) and the y-intercept by the 

parameter b.  In this case, 
i

y -values are the corresponding (uncorrelated) observa-

tions, and i i
x x

α

=  are constants (error free, fixed, absolutely known). This model 

is the well-known standard regression model of y
α

 (dependent variable) on x (in-

dependent variable) or the standard LS model. Exchanging the role of variables, 

regression of ‘ x
α

 on y’ can easily be obtained with obviously different results.  

Using the LS method of observation equations (method of parameters), the initial 

observation equations (functional model) are linear with respect to the unknown 

parameters (a, b), i.e.,  

 
i i i

a
y ax b [x 1]

b

α
⎡ ⎤

= + = ⎢ ⎥
⎣ ⎦

. (2.1) 

Taking the conventional for the sign relation i i i
y y v

α

= + , the linear observation 

equations are, 

 
i i i i i

a
y ax b v [x 1] v

b

⎡ ⎤
= + + = +⎢ ⎥

⎣ ⎦
. (2.2) 

In matrix notation, 

 
α

= +y Az v  (2.3) 

or in matrix layout  

 

1 1 1

2 2 2

n n n

y x 1 v

y x 1 va

b

y x 1 v

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

� � � �
  (2.4) 

where the errors 
i

v  represent the so called ‘vertical’ distances along the y-axis, 

from any observed point to the line. 
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2.1. Equal measurement precision with one observable parameter 

For n data points and assuming 
i

y of equal precision, i.e. 2 2 2 2

1 2 n
= =σ σ = = σ σ… , 

their covariance matrix is 2 2
Q= σ = σC I  (Q = I) with 2

σ known or unknown. In 

both cases we can use the weight matrix 1−
= =P Q I . In case of an unknown 

2
σ (equal weights with unknown precision) an unbiased estimate has to be deter-

mined, needed for the estimation of covariance matrices of the parameter estimates. 

Having thus equal weights for each observation 
i

y , i.e., p 1= , the LS solution is 

obtained by applying the criterion, 

 
2 2 2

i i i i
pv v (y ax b) min

α

= = − − =∑ ∑ ∑  . (2.5) 

The well-known LS algorithm of the method of observation equations (e.g., Der-

manis and Fotiou 1992), results in the following best linear unbiased estimations 

(maximum precision) either 2
σ  is known or unknown, 

 
( )

xy xyi i i i

2 22
xxxi i

m sn x y x y
â

smn x x

−∑ ∑ ∑
= = =

−∑ ∑
 (2.6) 

 
( )

2
i i i i xy xy

2 22
xxxi i

y x x x y m siˆ ˆb y x y x y ax
smn x x

−∑ ∑ ∑
= = − = − = −

−∑ ∑

∑
 (2.7) 

 i i i i i i i
ˆ ˆˆ ˆˆ ˆ ˆv y (ax b), y y v ax bα

= − + = − = + . (2.8) 

Note that the best fit line passes through the centroid ( x , y ), a point on the line. In 

case 2
σ is unknown an unbiased estimate, given by  

 
2

i2
v̂

ˆ
n 2

σ =

−

∑
  (2.9) 

should be used instead of the unknown 2
σ  and moreover it could be statistically 

tested against a priori 2

o
σ . The precision of the estimated parameters is given by 

 
2 2 2

â 2

xxx

1 1
ˆ

snm

σ = σ = σ  (2.10) 

 

2 2 2

2 2 2x
ˆ 2b

xxx

m x 1 x
ˆ ( )

n snm

+
σ = σ = σ +  (2.11) 

 
2 2

ˆˆ 2ab

xxx

x x
ˆ ( ) ( )

snm
σ = σ − = σ −  (2.12) 

where, the mean values x , y , the dispersions 2

x
m , 2

ym  and the scatter quantities 

, S
xx xy
s , are given by 
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i

1
x x

n
= ∑ ,    i

1
y y

n
= ∑     (2.13) 

 
2 2 2 2

x i i

1 1
m (x x) x x

n n
= − = −∑ ∑ ,      

2 2

xx x i
s nm (x x)== −∑  (2.14) 

 
xy i i i i

1 1
m (x x)(y y) x y x y

n n
= − − = −∑ ∑ , 

  
xy xy i i
s nm (x x)(y y)= = − −∑ . (2.15) 

A computational simplification results from the reduction of measurements to their 

centroid (x, y) . Instead of the initial data (xi, yi) we can use the reduced values 

i i i i
x x x, y y y′ ′= − = − , having thus 

i i
x 0, y 0′ ′= =∑ ∑ , and for the new centroid 

with x y 0= = , the previous expressions are accordingly modified, e.g., b̂ 0= . 

 

2.2. Different measurement precision with one observable parameter 

Considering now different precisions for each observation 
i

y , usually in the form 
2 2 2

i i
q=σ σ , the diagonal covariance matrix is written as 2

= σC Q , where 
2 2 2

1 2 n
diag(q ,q ,...,q )=Q  is a known matrix and 2

σ a reference variance, known or 

unknown as previously stated. Therefore, the weight matrix P is  

 
1 2 2 2

1 2 n 1 2 n
diag(1/ q ,1/ q ,...,1/ q ) diag(p ,p ,...,p )

−

= = =P Q .  

In case of an unknown variance factor, a priori variance 2

o
σ  could be (statistically) 

tested against the posteriori 2
σ̂  which is used instead of an unknown 2

σ . 

Applying the LS criterion, 

 
2 2

i i i i i
p v p (y ax b) min

α

= − − =∑ ∑ . (2.16) 

It is obvious in (2.16) that measurements with less uncertainties (greater precision) 

or greater weights have greater influence on the estimations of parameters. For the 

sake of completeness, the corresponding estimations (as above) are given by,   

 
( )

pxy pxyi i i i i i i i

2 22
pxxpxi i i i i

m s( p )( p x y ) ( p x )( p y )
â

sm( p )( p x ) p x

−∑ ∑ ∑ ∑
= = =

−∑ ∑ ∑
 (2.17) 

 
( )

2
i i i i i i i i pxy

2 22
pxi i i i i

pxy

pxx

( p y )( p x ) ( p x )( p x y ) mib̂ y x
m( p )( p x ) p x

s
ˆy x y ax

s

−∑ ∑ ∑
= = − =

−∑ ∑ ∑

= − = −

∑

 (2.18) 
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noting that weights have been incorporated, i.e.,  

 i i

1
x p x

n
= ∑ ,    i i

1
y p y

n
= ∑   (2.19) 

 
2 2 2 2
px i i i i

i i

1 1
m p (x x) p x x

p p
= − = −∑ ∑
Σ Σ

,  

 
2 2

pxx i px i is p m p (x x)== Σ −∑  (2.20) 

 pxy i i i i i i

i i

1 1
m p (x x)(y y) p x y x y

p p
= − − = −∑ ∑
Σ Σ

 (2.21) 

 pxy i pxy i i i
s p m p (x x)(y y)= Σ = − −∑ .  (2.22) 

Moreover, precision estimates are given by 

 
2

i i2
ˆp v

ˆ
n 2

σ =

−

∑
  (2.23) 

 
2 2 2
â 2

pxxi px

1 1
ˆ

s( p )m
σ = σ = σ

∑
 (2.24) 

 

2 2 2
px2 2 2

ˆ 2b
i pxxi px

m x 1 x
ˆ ( )

p s( p )m

+

σ = σ = σ +

∑∑
 (2.25) 

 
2 2

ˆˆ 2ab
pxxi x

x x
ˆ ( ) ( )

sp m
σ = σ − = σ −

∑
 (2.26) 

where 2
σ  is the known or the posteriori variance.  

 

 

3. Two observable parameters with the slope-intercept form 

This is the case where both x ,y
α α

 are observable parameters and therefore 
i i

(x , y )  

are the measurements subjected to errors. Next we will see that this model is con-

siderably more complex and has been too much analyzed and discussed, having 

moreover some drawbacks. 

Models that account for errors on all observable parameters are also called EIV 

(Errors In Variables) models, usually in the statistical community or TLS models in 

the geodetic community, either being linear or non-linear. The solutions differ on 

the formulation of the target function that is minimized, the linearization process 
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and the computational methods and techniques. In geodetic terminology, let say, 

we have to do with an extension or modification of the general adjustment model 

of Gauss Helmert, called here MMM, as already stated above.  

 

3.1. The modified mixed model with the slope-intercept form 

The functional model is now not linear though looks so at a first sight. According 

to the LS method of mixed equations, also called the generalized LS method or 

total least squares, for any observed point a mixed equation is written, i.e., 

 i i i
F ax b y 0

α α

= + − = ,         i = 1,…, n. (3.1) 

Following the linearization process, a Taylor series expansion is considered, up to 

first order terms, around the approximate values 
o o

a ,b  for the unknown parame-

ters a,b  and 
o o

i i
x ,y  (against the usual point i i

x ,y ) for the unknown observable 

parameters as well. In this way, the linear system is formed as 

 
o o o o o oi i

i i i i i i

o o

F F
F (a,b,x ,y ) F (a ,b ,x , y ) (a a ) (b b )

a b

α α
∂ ∂

= + − + − +
∂ ∂

 

  
o oi i

i i i i

i io o

F F
(x x ) (y y ) ... 0

x y

α α

α α

∂ ∂
+ − + − + =
∂ ∂

. (3.2) 

With o

a a a= + δ , o

b b b= + δ , 
i

i i xx x v
α

= − , 
i

i i yy y v
α

= − , 
i

o o

i i x
x x v= −  and 

i

o o
i i yy y v= − , equation (3.2) becomes 

 
i

i i i

i

o
xo o o o o o

i x i y i x o
y

va
[a (x v ) b (y v )] [(x v ) 1] [a 1]

b v

⎡ ⎤δ⎡ ⎤
⎢ ⎥− + − − + − − − +⎢ ⎥δ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

  

o

i io

o

i i

x x
[a 1] 0

y y

α

α

⎡ ⎤−
+ − =⎢ ⎥

−⎢ ⎥⎣ ⎦
. (3.3) 

Noting that,  

 
i i i i

o o o

i i i x i x x x
x x (x v ) (x v ) ( v v )
α

− = − − − = − +   and  
i i

o o
i i y yy y ( v v )
α

− = − + ,  

equation (3.3) results in 

 
i

i

i

xo o o o
i i i x

y

va
[a x b y ] [(x v ) 1] [a 1] 0

b v

⎡ ⎤δ⎡ ⎤
+ − + − − − =⎢ ⎥⎢ ⎥δ⎣ ⎦ ⎢ ⎥⎣ ⎦

  (3.4) 

We would arrive at the same expression (3.4) by means of an indirect linearization 

process, i.e., developing 
i i

o o
i i i x i yax b y (a a)(x v ) (b b) (y v )
α α

+ − = +δ − + +δ − − =  
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i i i i

o o o o o o
i x x i y y(a a)(x v v ) (b b) (y v v ) 0= +δ + − + +δ − + − = , and making some al-

gebraic arrangements as well as ignoring 2nd order terms.   

From (3.4), the structure of the linear system is 

 

1

2

1

n
2

1

2n

n

x

x
oo o o

1 x1 1
oo o o

x2 x2 2

y

oo o o
yn n n x

y

v

v

(x v ) 1a x b y a 0 0 1 0 0
v(x v ) 1 aa x b y 0 a 0 0 1 0

b v

v0 0 a 0 0 1a x b y (x v ) 1

v

⎡ ⎤
⎢ ⎥
⎢ ⎥

⎡ ⎤−⎡ ⎤ ⎡ ⎤+ − ⋅ ⋅ − ⋅ ⋅ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− δ+ − ⎡ ⎤ ⋅ ⋅ − ⋅ ⋅⎢ ⎥⎢ ⎥ ⎢ ⎥+ − ⎢ ⎥⎢ ⎥⎢ ⎥ δ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⋅ ⋅ ⋅ ⋅ −+ − − ⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦ ⎢ ⎥

⎢ ⎥
⎢⎣ ⎦

�

� � � � � � � �� � �

�

0

0

0

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

⎥

�
 

 (3.5) 

or in brief,  

 + − =w Az Bv 0 .  (3.6) 

From (3.5) it is obvious that the design matrix A is partially affected by the errors 

of 
i

x  while matrix B, as happens in this form of functional model, is unaffected of 

any observational error. Next, the LS solution is carried out through an iterative 

scheme, where at the same iteration the approximate values 
i

o o o

x
a ,b ,v  are properly 

updated as explained in below.  

The LS solution is obtained by means of the traditional method of Lagrange multi-

pliers, where an objective function is minimized under equality constraints, here, 

 ( )
i i i i

2 2 T
x x y yp v p v min+ = =∑ v Pv ,    under     i i i

F ax b y 0
α α

= + − =  (3.7) 

Remember that the weight matrix P is considered diagonal although the solution 

can go along with a full matrix. 

In order to facilitate a simple computer program, a few details for the implementa-

tion of the MMM are given. Taking the (diagonal) covariance matrix 

 

2

1

2
y

−

⎡ ⎤σ⎡ ⎤
⎢ ⎥= =⎢ ⎥

σ⎢ ⎥⎣ ⎦ ⎣ ⎦

x x

y

C 0 Q 0
C = P

0 C 0 Q

  (3.8) 

with the reference variance known or unknown, the weight matrix is, 

 

1

1

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

x

y

Q 0
P =

0 Q
 (3.9) 

reminding that the (posteriori) estimated variance 2
σ̂  is used instead of an un-

known one. In order to formulate the normal equation system (�z = -u ), we go on 
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through matrix B and M, i.e., 

 o

n n
a⎡ ⎤= −⎣ ⎦B I I ,    

1

1 T o 2

2 n
(a ) diag( , ,..., )− ⎡ ⎤= + = μ μ μ⎣ ⎦x y

M = BP B C C  (3.10) 

 
i i

i i

o 2
o 2 2 2

i x y
x y

(a ) 1
(a )

p p
μ = σ + σ = +   (3.11) 

 
1

1 2 n 1 2 n
diag(1/ ,1/ ,...,1/ ) diag(p ,p ,...,p )

−

= µ µ µ =M  ,      
i

1
p

ι

=
µ

 (3.12) 

 
( ) ( )

( )
i i

i

2
o o

i i x i i x 11 12T 1

o
21 22

i i x i

p x v p x v N N

N N
p x v p

−

⎡ ⎤− − ⎡ ⎤⎢ ⎥ = ⎢ ⎥⎢ ⎥
⎣ ⎦−⎢ ⎥⎣ ⎦

∑ ∑

∑ ∑
Ν = Α M A = , (N21=N12)(3.13) 

 
( )

i

o

i i i x 1T 1

2
i i

p w x v u

up w

−

⎡ ⎤− ⎡ ⎤
⎢ ⎥ = ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

∑

∑
u = Α M w = ,          

o o

i i i
w a x b y= + − . (3.14) 

Corrections of parameter estimations are then given by, 

 

22 12 11

12 11 2

22 1 12 2

12 1 11 2

â N N u1
ˆ

ˆ N N udet( )b

N u N u1

N u N udet( )

−

δ⎡ ⎤ −⎡ ⎤ ⎡ ⎤
= − = − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−δ ⎣ ⎦ ⎣ ⎦⎣ ⎦

−⎡ ⎤
= − ⎢ ⎥− +⎣ ⎦

z = Ν u
�

�

 (3.15) 

where, det(�) = N11 N22 - (N12)
2 ≠ 0, and the parameter estimations by 

 

o

a o

o

â ˆa a
ˆ ˆ

ˆ ˆb b b

⎡ ⎤⎡ ⎤ + δ
= = + ⎢ ⎥⎢ ⎥

+ δ⎢ ⎥⎣ ⎦ ⎣ ⎦
z z z =  . (3.16) 

The estimation of errors and observable parameters (adjusted observations) are, 

 1 T 1
ˆ

ˆ ˆ)
ˆ

− −

⎡ ⎤
=⎢ ⎥

⎣ ⎦

x

y

v
v = P B M (w + Az

v
  (3.17) 

or analytically, 

 
i

o o o

i i i i i x
ˆs ( ) a x b y (x v ) a b= = + − + − δ + δw +Az  (3.18) 

 
i i i i

o 2 2
x x i i y y i iˆ ˆv (a p )s , v ( p )s= σ = − σ  (3.19) 

 
i i

a a
i i x i i yˆ ˆ ˆ ˆx x v , y y v= − = −  . (3.20) 

Also, the estimation of an unknown variance factor, i.e. the posteriori variance, is  
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( )

i i i i

2 2

x x y y2
ˆ ˆp v p v

ˆ
n 2

+

σ =

−

∑
 . (3.21) 

Lastly, the covariance matrices for different estimation can be derived applying the 

propagation law of covariances. Among them, of considerable importance are the 

covariance matrix of parameter estimations ˆâ, b , being the elements of the inverse 

matrix 
1−

�  given above, that is,  

 
2 2 22

â

N
ˆ

det( )
σ = σ

�
,  

2 2 11

b̂

N
ˆ

det( )
σ = σ

�
,  

2 12
ˆâb

N
ˆ

det( )
σ = −σ

�
 . (3.22) 

The above estimations are Best Linear Unbiased Estimations (BLUE) according to 

the LS principles. For a statistical evaluation of the model, e.g. testing for outliers, 

the probability density function for the errors should be known. As usually, this is 

the Normal (Gauss) distribution, accepted mainly for mathematical simplicity 

against others and because it is a reasonable choice. Admitting the normal distribu-

tion, the estimations derived also by the Maximum Likelihood method are identical 

with the LS estimates.  

An approximation to the above rigorous MMM solution starts from Taylor series 

expansion around the point 
o o

i i i
F (a ,b ,x ,y )  instead of 

o o o o

i i i
F (a ,b ,x ,y ) , forming 

thus matrix A depending on observations i
x  and not on the approximate observa-

tions 
o

i
x  as stated previously.  

This approximation is the usual application of the so called general/mixed model 

(Gauss-Helmert) in Geodesy and Surveying (e.g, Mikhail and Ackermann 1976, 

Dermanis 1987, Ghilani 1997), giving satisfactory results only if the approximate 

values 
o o

a ,b  are sufficiently close to the true ones and that the observational errors 

have small size.  

A drawback of this traditional mixed model is that in case of equal precision for the 

observed points the derived estimates of parameters (a, b) cannot be updated and 

improved, as it can easily be shown that they are independent of their approximate 

values. Actually they are identical with those derived from the simple/standard re-

gression model, where only i
y  -observations are subjected to errors (e.g., Dermanis 

and Fotiou 1992).  

 

 

3.2. The iterative process of MMM with the slope-intercept form 

The iterations for obtaining the MMM solution start with initial approximate values 
o o

a , b  computed by a suitable way, e.g. by the standard LS solution presented in 

chapter 2 or even by the orthogonal solution of the next chapter. Moreover, the ini-

tial values for the approximate errors in matrix A are taken as zero (
i

o

x
v 0= ). In 
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this way, approximate weights from (3.11) are computed and estimations 
(1) (1)ˆâ , bδ δ  given by (3.15), 

(1) (1)ˆâ , b  by (3.16) and 
i

(1)
xv̂  by (3.19) are obtained. 

Now, with these better estimates, as the new approximate values, the second itera-

tion starts resulting in 
(2) (2)ˆâ , b , 

i

(2)
xv̂ , and so on until the fulfillment of a conver-

gence criterion. It should be noted that within the same iteration, though it is not 

necessary, other estimates, such as  
i i

a(1) (1) a(1) (1)
i ii ix y

ˆ ˆ ˆ ˆx x v , y y v= − = −  , given by 

(3.20) and 2(1)
σ̂  given by (3.21), could be also updated instead of the end of the 

whole process, resulting in their final adjusted values.  

A convergence criterion for the successive absolute differences is set, usually for 

the updated parameters (a, b) or even for all updated parameters. The tolerance de-

pends on the degree of closeness of the initial approximate values to their true val-

ues and on the level of accuracy needed. For example, if the observations are UTM 

map coordinates given with ten significant figures and of cm-precision, a threshold 

εa = 1.0E-10 to 1.0E-11 for the slope a, 
(i 1) (i)

a
ˆ ˆ| a a |+

− ≤ ε , and εb = 1.0E-03 to 1.0E-

04 for the intercept b, 
(i 1) (i)

b
ˆ ˆ| b b |+

− ≤ ε , could be an adequate choice. A general 

rule for the computations would be to use double precision arithmetic and round 

properly at the end of the process. 

The iterated MMM algorithm is very easily understood and implemented, against 

other equivalent or similar existed models and iterated methods, as those given by 

Schaffrin and Wieser 2008, Shen et al. 2011, Simkooei and Jazaeri 2012, Pan et al. 

2015, the latter being almost the same with MMM as far as the used line form. A 

completely different model has been given by Neri et al. (1989) where the best fit-

ting line is estimated by minimizing the perpendicular distances to the line, which 

are weighted on the basis of error propagation law, without approximations and 

updating of parameters except in the final step of solving a quadratic equation. 

Without going into details, some of the rigorous referred models have computa-

tional difficulties and/or biases with the covariance estimations of parameters. 

All the quoted iterated models use different precision for each one of the observa-

tions and use also the same well-known example, whose data ( i i
x ,y ) has been giv-

en by Pearson (1901) completed with York’s weights (1966). The presented here 

MMM, used the same data and gave identical results both for the estimations (pa-

rameters, errors, observables, a posteriori variance) and the covariances of the es-

timated parameters when base on LS principles. 

Another group of EIV models and solutions found in the literature is based on the 

Maximum Likelihood Method (e.g., Madansky 1959, York 1966, Reed 1992, York 

et al. 2004, Cantrell 2008). Although the estimation of parameters agrees with 

those given by the presented MMM and the other equivalent referred models, criti-

cism has been raised on the stochastic behavior and interpretation of the parameter 

estimates, and also on some computational difficulties.  
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3.3. Orthogonal fitting with equal precision and the slope intercept form 

The previous MMM algorithm works also with equal precision or equal weights, 

 
i i i i

2 2 2
x y x y, (P I , p p 1)σ = σ = σ = = =    (3.23) 

Orthogonal fitting (geometric fitting, orthogonal regression) is a special case that 

has been studied since the late of 1800’s (Adcock 1987) and has been taken closed 

analytical solutions, based on non-linear LS. For that reason, and because this case 

is interesting for many applications, it is here presented. 

The squares of the errors that are minimized represent the squares of the perpen-

dicular distances from any point to the fitting line. According to the LS criterion, 

the associated target function S is equivalently written as, 

( )
2

i i2

1
S(a,b) y ax b min.

1 a
= − − =

+

∑  (3.24) 

The minimization criterion in this form was given for the first time by Adcock 

1877, obtaining a solution given by a somehow inelegant (but correct) formula. 

Zeroing the first derivatives with respect to (a) and (b), the estimations ˆâ ,b  are 

obtained. Setting first ( S(a,b) / b) 0∂ ∂ = , we have 

 b y a x= −  (3.25) 

meaning that the fit line passes through the centroid ( x, y ).  Substituting (3.25) in 

(3.24), S depends only in a, 

 

2
yy xy xx

2

s 2as s a
S(a) min

1 a

− +

= =

+

. (3.26) 

From (3.26), taking ( S(a) / a) 0∂ ∂ = , we arrive at the quadratic equation 

 
2

xy yy xx xy
ˆ ˆs a (s s )a s 0− − − =  (3.27) 

which has generally two solutions. The correct solution, that minimizes (3.26) (2nd 

derivative>0) is that with the + sign before the square root of the discriminant, i.e., 

 
xy

2 2
yy xx yy xx

xy

s s (s s ) 4s

â
2s

− + − +

=   (3.28) 

(see also, Dermanis 1988, Dermanis and Fotiou 1992, Chevron 2010). Finally,  

 ˆ ˆb y a x= −  .    (3.29) 

An equivalent and simple to apply formula given by Pearson (1901), is 
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xy

xx yy

2s
ˆtan(2 )

s s
θ =

−
 (3.30) 

where θ stands for the orientation line angle, although (3.30) can be derived by a 

simple transformation of (3.28), e.g. Dermanis (1988), and inversely (3.28) can be 

derived from (3.3) if (tan2θ) is expressed as a function of θ. From (3.30), with a 

little investigation, ( ˆ2θ ) is computed at first and the reduced to the proper quad-

rant, accounting for both signs (+ or -) of the numerator and denominator. Then ˆθ  

(0 ≤ θ ≤ π) and the slope ˆâ tan( )= θ  are obtained,   

The above parameter estimations by means of orthogonal fitting have the signifi-

cant characteristic that they are independent of the position and the orientation of 

the coordinate system. Therefore, the best fit line remains the same (invariant) un-

der translation and rotation of the (orthogonal) coordinate frame, but not invariant 

under scaling transformation unless the scale parameters for both coordinates are 

the same (e.g., Chernov 2010). 

3.3.1. Special cases  

Obviously, a solution for â  from (3.28) is possible if 
xy
s 0≠ . In case 

xy
s 0= , the 

variables x and y are completely independent and this condition can hold only if 

the line is either horizontal 
yy

ˆ(a 0, s 0,)= =  or vertical 
xx

ˆ(a , s 0)= ∞ = . The correct 

solution depends on the comparison between 
xx yy

(s , s ) . We have a horizontal line 

if 
xx yy
s s ( 0)> =  or a vertical line if 

yy xx
s s ( 0)> = . 

Another special case is when all data points are collinear (perfect fit). This 

(theoretical) situation means that the orthogonal distances from points to the line 

are zero, therefore, from (3.26) the sum S(a) = 0 or 
2

yy xy xxs 2as s a 0− + = . 

Because there is only one solution, the discriminant is zero, that is 
2
xy xx yy4s 4s s 0− =  or 

2
xy xx yys s s 0− =  which is the condition for collinearity. The 

associated solution is then (
xy xx
s / s ) that is identical to the simple linear 

regression (eq. 2.6). 

Apart from the unique solution, i.e., the estimation of a unique best fit line, there 

are some cases, although seldom in practice, where infinitely may solutions of best 

fit lines exist (Chernov et al. 2013). This happens if and only if 
xy 0 xx yy

(s , s s )
=

= , a 

condition that is a perfect circular symmetry (isomorphism) under arbitrary rota-

tion. An example of such lines is when the data points are placed on the vertices of 

a regular polygon, where any line passing through its centroid is a best fit line. 

 

3.4. Fitting with a known ratio of precision with the slope-intercept form 

In a similar way with the previous development, we consider now the case where 

the ratio k of the precision for any observed point is known, that is, 
x y

k /=σ σ , or 
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x y

2 2 2
y xk ( / ) (p / p )= σ σ = . In this case we’ll have (e.g., Chernov 2010), 

 ( )
2

i i2 2

1
S(a,b) y ax b min.

1 k a
= − − =

+

∑  

 
xy

2 2 2 2 2
yy xx yy xx

2
xy

k s s (k s s ) 4k s

â
2k s

− + − +

=  (3.31) 

 ˆ ˆb y a x= − . (3.32) 

It has to be pointed out that in this model the minimized distances are not perpen-

dicular to the fit line but have a direction along the vector ˆ(ka, 1)− . With a ratio k 

different from point to point, a closed solution is not possible and iterative methods 

have to be applied, as those above. For k=1 we are reduced to the orthogonal re-

gression (equal weights).  

 

 

4. Two observable parameters with the general equation form 

The general form is free from the drawbacks or inconsistencies of the slope-

intercept form. The general line equation, 

 Ax By Cα α

+ =  (4.1) 

is applicable with the restriction that A, B should not both equal zero, or equiva-

lently 
2 2

A B 0+ > . Then, for A≠0 the line cuts of intercept (C/A) on x-axis while 

for B≠0 the line cuts of intercepts (C/B) on y-axis and line slope (-A/B). As special 

cases, we have a horizontal line (y = C/B) when A=0 and a vertical line (x = C/A) 

when B=0. In addition, for A=0 and B=0 there is not exist a line if C ≠ 0 and there 

is an infinite number of solutions-lines if C = 0. 

Each line in the general form (4.1) can be represented by an infinite number of vec-

tors (A, B, C), all being proportional to each other, for instance lines 

3x 4y 9
α α

+ =  and 6x 8y 18
α α

+ =  express the same line. In order to eliminate 

this ‘ambiguity’, it is necessary to impose a constraint, a suitable form being, 

 
2 2

A B 1+ =  (4.2) 

which satisfies the above restriction (
2 2

A B 0+ > ) and has a clear geometric inter-

pretation as we will see below. 

Following the idea of the presented MMM in chapter 3, the target function to be 

minimized is   

 ( )
i i i i

2 2 T
x x y yS(A,B,C) p v p v min= + = =∑ v Pv ,  (4.3) 
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under the conditions and constraint 

 i i i
G Ax By C 0

α α

= + − =     and     
2 2

h A B 1 0= + − = . (4.4) 

We can proceed on using as above the MMM model with constraints, based on the 

well-known general/mixed model with constraints, following the Least Squares 

solution with Lagrange multipliers and taking care on proper updating of parame-

ters in the iterative algorithm.  

However, a simplification to the functional model is possible by taking a parameter 

(t) instead of the two parameters A and B, so that  

 A cost, B sin t= =     (4.5) 

fulfilling thus automatically the constraint 
2 2

A B 1+ = . In doing so, the constraint 

is eliminated, having two independent parameters (t, C). Equation (4.1) becomes,  

 x cos t y sin t r
α α

+ =  (4.6) 

where C = r, and requiring at the end of a best fit process r ≥ 0, parameter r 

represents the distance from the origin of the reference system to the line while t is 

the orientation angle of distance r reckoned positive from x-axis and anticlockwise.  

Obviously angle (t) is related to the orientation line angle ω, i.e. a=tanω, a = –A / B 

= –cost/sint and b=r/sint. Noting that 0 ≤ t < 2π and 0 ≤ ω < π, it is easily derived 

the relation ω = t + π/2, or ω = t + 90º (Fig.1). If ω ≥ 2π then ω is reduced to ω1= 

(ω -2π). If now, ω1 ≥ π then a new reduction ω2= (ω1 -π) gives the final correct 

value. These procedures can be work inversely, that is having ω to compute t, e.g. 

when an approximate value for (t) is needed from line slope (a) derived by a simple 

regression model (see next chapters 4.1, 4.2.).  

From here on we will use the normal form of the line and the MMM solu-

tion/adjustment algorithm will be presented. 

 

4.1. The modified mixed model with the normal equation form 

The functional model is obviously not linear. According to the LS method of mixed 

equations, for any observed point a mixed equation is written, i.e., 

 i i i
G x cost y sin t 0

α α

= + = ,          i = i,…, n. (4.7) 

Following, as above, the known linearization up to first order terms, around the 

approximate values 
o o

t ,r  and 
o o

i i
x ,y , the linear system is formed, and for any 

point we have,  

 
o o o o o oi i

i i i i i i

o o

G G
G (t,r,x , y ) G (t ,r ,x , y ) (t t ) (r r )

t r

α α
∂ ∂

= + − + − +
∂ ∂
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  o oi i

i i i i

i io o

G G
(x x ) (y y ) ... 0

x y

α α

α α

∂ ∂
+ − + − + =
∂ ∂

 (4.8) 

With o

t t t= + δ , o

r r r= + δ , 
i

i i xx x v
α

= − , 
i

i i yy y v
α

= − , 
i

o o

i i x
x x v= − , 

i

o o
i i yy y v= − ,  and noting that,  

i i

o o

i i x x
x x ( v v )
α

− = − + , 
i i

o o
i i y yy y ( v v )
α

− = − + ,  

equation (4.8) becomes, 

 
o o o o o o o o o

i i i i

t
(x cos t y sin t r ) [( x sin t y cos t ) 1]

r

δ⎡ ⎤
+ − + − + − +⎢ ⎥δ⎣ ⎦

 

  
i i

i i

o

x xo o

o

y y

v v
[cos t sin t ] 0

v v

⎡ ⎤− +
⎢ ⎥+ =
⎢ ⎥− +⎣ ⎦

 (4.9) 

or, 

 
o o o o o o o

i i i i

t
[x cos t y sin t r ] [( x sin t y cos t ) 1]

r

δ⎡ ⎤
+ − + − + − +⎢ ⎥δ⎣ ⎦

 

  
i

i

x
o o

x

v
[cos t sin t ] 0

v

⎡ ⎤
− =⎢ ⎥

⎢ ⎥⎣ ⎦
. (4.10) 

The same expression (4.10) is also derived by an indirect linearization process as 

stated in chapter 3.1.  

From (4.10), the linear system in matrix layout is written as, 

 

o o o o o o o

1 1 1 1

o o o o o o o

2 2 2 2

o o o o o o o

n n n n

x cos t y sin t r ( x sin t y cos t ) 1

tx cos t y sin t r ( x sin t y cos t ) 1

r

x cos t y sin t r ( x sin t y cos t ) 1

⎡ ⎤ ⎡ ⎤+ − − + −
⎢ ⎥ ⎢ ⎥ δ+ − − + − ⎡ ⎤⎢ ⎥ ⎢ ⎥+ ⎢ ⎥δ⎣ ⎦⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+ − − + −⎣ ⎦ ⎣ ⎦

� � �
 

  

1

2

n

1

2

n

x

x

o o

o o
x

y

o o

y

y

v

v

cos t 0 0 sin t 0 0 0

v 00 cos t 0 0 sin t 0

v

0v0 0 cos t 0 0 sin t

v

⎡ ⎤
⎢ ⎥
⎢ ⎥

⎡ ⎤⋅ ⋅ ⋅ ⋅ ⎢ ⎥ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⋅ ⋅ ⋅ ⋅⎢ ⎥− =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎣ ⎦⋅ ⋅ ⋅ ⋅⎣ ⎦

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

�

�� � � � � � � �

�

 (4.11) 

or in brief, 

 + − =w Az Bv 0 .  (4.12) 
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Again, it is evident that matrix A is now fully affected by the errors of both obser-

vations 
i

x  and 
i

y . 

As in chapter 3.1 the LS solution is carried out in an iterative scheme, where at 

each iteration the approximate values 
i i

o o o o

x y
t , r ,v ,v  are properly updated. 

The LS solution follows the traditional method of Lagrange multipliers, where the 

objective function is minimized under equality conditions, i.e., 

 ( )
i i i i

2 2 T
x x y yp v p v min+ = =∑ v Pv ,   under     i i i

G x cos t y sin t r 0
α α

= + − =  (4.13) 

or,  

 T T

i i
2 (x cos t y sin t r) min.

α α

Φ = + + − =v Pv λ  (4.14) 

with λ being the Lagrange multipliers.  

Considering again a diagonal covariance matrix of errors or observations (3.8, 3.9), 

the MMM algorithm is as follows: In order to formulate the system of normal 

equations (�z = -u ) we have to determine step by step, 

 
o o

n n
cos t sin t⎡ ⎤= ⎣ ⎦B I I  (4.15) 

 
1

1 T o 2 o 2

2 n
(cos t ) (sin t ) diag( , ,..., )− ⎡ ⎤= + = μ μ μ⎣ ⎦x y

M=BP B C C  (4.16) 

 
i i

i i

o 2 o 2
o 2 2 o 2 2

i x y
x y

(cos t ) (sin t )
(cos t ) (sin t )

p p
μ = σ + σ = + ,       

i

1
p

ι

=
µ

   (4.17) 

 
1

1 2 n 1 2 n
diag(1/ ,1/ ,...,1/ ) diag(p ,p ,...,p )

−

= µ µ µ =M  (4.18) 

 
11 12T 1

21 22

N N

N N

−

⎡ ⎤
⎢ ⎥
⎣ ⎦

Ν = Α M A =  =                          (N21=N12) 

  
( ) ( )

( )

2
o o o o o o o o

i i i i i i

o o o o

i i i i

p x sin t y cos t p x sin t y cos t

p x sin t y cos t p

⎡ ⎤− + − − +⎢ ⎥
⎢ ⎥
− − +⎢ ⎥⎣ ⎦

∑ ∑

∑ ∑
=  (4.19) 

 
1T 1

2

u

u

−

⎡ ⎤
⎢ ⎥
⎣ ⎦

u = Α M w = = 

  
( )o o o o

i i i i

i i

p w x sin t y cos t

p w

⎡ ⎤− +
⎢ ⎥=
⎢ ⎥−⎣ ⎦

∑

∑
,     

o o o

i i i
w x cos t y sin t r= + − . (4.20) 

Then, the estimation of corrections and parameters are, 
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22 12 11

12 11 2

ˆ N N ut 1
ˆ

N N uˆ det( )r

−

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤δ
= − = − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−δ ⎣ ⎦ ⎣ ⎦⎣ ⎦

z = Ν u
�

 

  
22 1 12 2

12 1 11 2

N u N u1

N u N udet( )

−⎡ ⎤
= − ⎢ ⎥− +⎣ ⎦�

 (4.21) 

where, det(�) = N11 N22 - (N12)
2  ≠0 , and  

 

o

a o

o

ˆˆ t tt
ˆ ˆ

r̂ ˆr r

⎡ ⎤+ δ⎡ ⎤
= = + ⎢ ⎥⎢ ⎥

+ δ⎢ ⎥⎣ ⎦ ⎣ ⎦
z z z =  . (4.22) 

The estimation of errors and observable parameters are given by 

 1 T 1
ˆ

ˆ ˆ)
ˆ

− −

⎡ ⎤
=⎢ ⎥

⎣ ⎦

x

y

v
v = P B M (w + Az

v
 (4.23) 

or, analytically,  

 
o o o o o o o

i i i i i i i
ˆs ( ) x cos t y sin t r ( x sin t y cos t ) t r= = + − + − + δ −δw+Az  (4.24) 

 
i i i i

o 2 o 2
x x i i y y i iˆ ˆv (cos t p )s , v (sin t p )s= σ = σ  (4.25) 

 
i i

a a
i i x i i yˆ ˆ ˆ ˆx x v , y y v= − = −  . (4.26) 

Also, the estimation of an unknown variance is  

 
( )

i i i i

2 2

x x y y2
ˆ ˆp v p v

ˆ
n 2

+

σ =

−

∑
  (4.27) 

and the covariances of the estimations ˆ ˆt, r , being the elements of the inverse ma-

trix 
1−

� , are  

 
2 2 22

t̂

N
ˆ

det( )
σ = σ

�
,  

2 2 11

r̂

N
ˆ

det( )
σ = σ

�
,  

2 12

ˆˆtr

N
ˆ

det( )
σ = −σ

�
 . (4.28) 

The above estimations are Best Linear Unbiased Estimations (BLUE). For a statis-

tical evaluation of the model, we admit the normal distribution of errors. Moreover, 

with this stochastic hypothesis the estimations of parameters are identical to those 

derived by the Maximum Likelihood method. We underline again that an approxi-

mation to the above rigorous MMM solution starts from a Taylor series expansion 

around the point 
o o

i i i
F (t ,r ,x ,y ) , instead of 

o o o o

i i i
F (t ,r ,x ,y ) , as happens in the 

application of the usual general/mixed model, where satisfactory results are ob-

tained in case good approximate values and small errors exist.  

In contrast to the significant weakness of the slope-intercept model with the famil-
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iar general/mixed adjustment model, the normal equation form gives accurate re-

sults in case of equal precision with the normal form and almost satisfactory results 

in case of different precision, as showed numerical tests. However, the MMM 

serves all cases and is preferable, particularly with data of different precision. 

 

4.2. The iterative process of the modified mixed model with the normal form 

At the beginning of the computations, initial approximate values 
o o

t , r  are com-

puted by a simple method and moreover, 
i i

o o

x y
v 0,v 0= = . Starting from (4.17), the 

estimations 
(1) (1)ˆ ˆt , rδ δ  from (4.21), 

(1) (1)ˆ ˆt , r  from (4.22) and 
i i

(1) (1)
x y

ˆ ˆv , v  from (4.25) 

are obtained. With the new estimates as the new approximate values the second 

iteration starts resulting in 
(2) (2)ˆ ˆt , r , 

i

(2)
xv̂ , 

i

(2)
yv̂ ,  and so on until a convergence 

criterion is fulfilled. Within the same iteration, though it is not necessary, other es-

timates, e.g.,  
i i

a(1) (1) a(1) (1)
i ii ix y

ˆ ˆ ˆ ˆx x v , y y v= − = −  from (4.26) and 2(1)
σ̂  from (4.27) 

can be also updated. In this parallel computations all estimations end with their ad-

justed values.  

A convergence criterion for the successive absolute differences is set. It depends on 

the initial approximate values and the level of accuracy needed. For example, if the 

observations are Cartesian map coordinates given with ten significant figures and 

of cm-precision, reasonable thresholds could be εt = 1.0E-10 to 1.0E-12 for the an-

gle t in radians, 
(i 1) (i)

t
ˆ ˆ| t t |+

− ≤ ε , and εr = 1.0E-03 for the distance r, 
(i 1) (i)

r
ˆ ˆ| r r |+

− ≤ ε  in meters. 

The MMM iterated algorithm with the normal line form is accurate and easily im-

plemented, as its counterpart in chapter 3. A computational test, by means of a for-

tran program in double precision arithmetic and with the same “Pearson’s-York’s” 

data showed that after about 10 to 12 iterations (depending on the approximate val-

ues) the results were identical with the previous MMM or other rigorous ap-

proaches. Note that the estimations of (t, r) should be converted properly in order to 

be comparable with those of (a, b). 

 

4.3. Orthogonal fitting with equal precision and the normal form 

The previous MMM algorithm (chapter 4.1) works also with equal precision or 

equal weights. Orthogonal fitting using the normal form leads to closed analytical 

solutions, as also happens with the general line equation model and should be pref-

erable. 

The squares of the errors of the perpendicular distances from any point to the fit 

line, that is minimized, is written as 

 ( )
2

i i
S(t,r) x cos t y sin t r min.= + − =∑  (4.29) 

Zeroing the first derivatives with respect to (t) and (r) the estimations ( ˆt̂ ,b ) are 
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derived. Setting ( S(t, r) / r) 0∂ ∂ =  results in 

 r x cos t ysin t= +  (4.30) 

meaning that the line passes through the centroid ( x, y ), a point on the fit line.  

Substituting (4.30) in (4.29), the function S depends only in (t), i.e., 

 ( )
2

i i
S(t) (x x)cos t (y y)sin t= − + − =∑  

  
2 2

xx xy yycos t S 2sin t cos tS sin t S min.= + + =  (4.31) 

where, 
xx yy xy

S , S , S  has been given above (e.g. eq. 2.14). From (4.31), setting 

( S(t) / t) 0∂ ∂ = , we arrive at the quadratic equation 

 
2 2

xy yy xx(cos t sin t)s sin t cos t(s s ) 0− + − = . (4.32) 

Dividing by cost, (4.32) becomes 

 
2

xy yy xx xytan t s tan t (s s ) s 0− − − =  (4.33) 

a solution that at a first glance is identical with (3.28). Dividing by sint, (4.32) be-

comes, 

 
2

xy yy xx xys cot t (s s )cot(t) s 0+ − − =  (4.34) 

an equation that is almost identical to that given by Alciatore and Miranda (1995) 

by means of a similar process.  

Furthermore, using the identities sin(2t) = 2sintcost, cos(2t) = (cos2t - sin2t), and 

dividing (4.32) by cos(2t), we arrive at the solution, 

 
xy

yy xx

2S
tan(2t)

s s

−

=

−

 (4.35) 

which is the same as that given by (3.29). The same solution is given also by 

Munoz et al. (2014).  

Equations (4.33) and (4.34) are quadratic and each one have two solutions, the cor-

rect one being that with the (+) sign before the square root of the discriminants. In 

order to compute the direction angle (t), a proper quadrant reduction is needed, as 

with the case of (4.35). Special cases have to be also examined, as presented above, 

noting that the normal form and the associated general form can safely represent 

vertical lines.  

Our interest is mainly (sint, cost) for the best fit line, from which A and B coeffi-

cients, and C or r, can be derived. For example, (4.33) gives the solution (3.28) and 

thus, 
xy

A 2s=  and 
xy

2 2
yy xx yy xxB s s (s s ) 4s= − + − + . 
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With a similar, as previously, development, we can easily derive closed expres-

sions when the ratio k of the precision for any observed point is known, that is, 

x y
k /=σ σ  or 2 2 2

x y y xk ( / ) (p / p )= σ σ =  is known. The corresponding solution in 

terms of (t, r), goes similar to that of chapter 3.4, based on the present formulation. 
Apart of the closed solutions presented previously, the orthogonal fitting with equal 
precision can be equivalently applied either by MMM or by the familiar gen-
eral/mixed adjustment model. 

 

 

5. Concluding remarks 

The problem of a best fit line, though it is a well-known solved problem over a 

century now, could still show certain pitfalls and inconsistencies, especially when 

both observations are subject to errors and the slope-intercept form is used. 

The traditional implementation of the general adjustment model does not lead in all 

cases to the correct or satisfactory solution except when used with the normal line 

form and certainly with data of equal precision. 

A new accurate iterative algorithm is presented using the normal form and a least 

squares modified mixed model (MMM), characterized by simplicity, clarity and 

ease of implementation. 

Many of the EIV or total least squares models, existed in the literature, present 

some computational difficulties and/or biases in the estimations. The presented 

MMM dos not suffer from such problems and could be the preferable model. 

The general line equation parameters obtained by the normal equation model ad-

justment process, or even directly using proper constraints, should be used as their 

values can be bounded. 
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