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Summary: Similarity 2D transformation models are presented giving emphasis on a 

slightly modified model, called in this study MMM, based on the general or mixed model 

of least-squares adjustment (Gauss-Helmert Model), where observations in both systems 

have different precision. For uncorrelated observations the adjustment algorithm is simpli-

fied by expressing analytically the elements of the matrices of the normal equation system. 

This model belongs also to the so called EIV models where solution methods, known also 

as TLS or WTLS, have been presented and focused in the literature the last few years. The 

presented model is extensively analyzed in order to become easily approachable and simple 

in software development. Also, for comparison reasons, the standard least-squares model 

(GMM) is analytically presented by its closed-form solution, to provide approximate values 

to the other iterative methods and because it is a familiar model in practice, e.g. in cadastral 

surveying, photogrammetry, GIS and image processing. Using data from four examples or 

experiments the presented models are compared to the published results which apply simi-

lar models.  

 

Key words: Helmert transformation, conformal transformation, least squares models, EIV 

models, total least squares, weighted total least squares, modified mixed ad-

justment model, coordinate transformation. 

 

 

1. Introduction 

Similarity transformation or Helmert transformation is being widely used in a vari-

ous sciences and scientific fields, such as geodesy, surveying, photogrammetry, 

cartography, remote sensing and GIS, e.g. Mikhail and Ackermann 1976, Para-

schakis and Fotiou 1988, Ghilani and Wolf 2006, Deakin 2007. Related applica-

tions are, for instance, the datum transformation problem, e.g. the transformation of 

GNSS/GPS coordinates to the Transverse Mercator map projection, the connection 

of geodetic networks and the connection of different cadastral coordinate systems, 

e.g., Fotiou 2007, Fotiou and Pikridas 2012. Homogenization of printed or elec-

tronic maps produced in different geodetic reference systems (different geo-
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referencing) and the transformation of image coordinates to map coordinates be-

long to the same category of applications. Of course, many other applications re-

quire different transformation models, e.g. affine, polynomial, depending on the 

nature of the problem and the gained experience. However, it is a matter of evalua-

tion the choice of the proper transformation model.  

In general, the problem that has to be solved is the transformation of point coordi-

nates between coordinate systems, supposed to differ according to what describes 

the distortion-free model of similarity or conformal transformation. 

In this study considering the model in 2-d and taking system (a) as the target sys-

tem and system (b) as the start system, we suppose that their difference can be ade-

quately described by four parameters, i.e. two translations (shifts), one scaling fac-

tor and one rotation so that the two systems are made coincident. Equivalently co-

ordinates of any point is transformed from one system to the other one by applying 

the transformation parameters. Consequently, any object defined by a set of point 

coordinates in the start system, is shifted, rotated and uniformly scaled (resized) in 

order to be transformed to the target system. 

The four transformation parameters are either known by a previous estimation or 

have to estimated or even re-estimated for testing purposes. In any case we have to 

deal with the determination of the transformation parameters. Data needed for this 

estimation is point coordinates in both systems, called common points, for at least 

two points. Coordinates are obtained by means of measuring processes and there-

fore are subjected to errors. A suitable parameter estimation method is then asked 

to account for inconsistencies and uncertainties of data, giving accurate results.  

First, it is obvious that more than two common points should be available and on 

the other hand a Least Squares (LS) method could be a proper and simple estima-

tion method. Meanwhile, as it happens in many projects, there is a large amount of 

non-common points of the start system that have to be transformed by means of the 

estimated model parameters.  

Apart from the functional model a stochastic model, associated with data points 

subjected to errors, has to be included. Using LS methods, errors are supposed to 

be random with zero expectation and an associated covariance matrix, known or a 

priori known. Moreover, in order to evaluate the model, the results of the adjust-

ment process have to be statistically tested. Consequently, random errors are also 

supposed to follow the Normal or Gauss distribution and the (mathematical) model 

of the adjustment (functional + stochastic) has to be properly tested. Here, the ran-

dom errors or the observations are considered uncorrelated, a realistic assumption 

in practice, although correlations are also taken into account.   

The presented LS models and adjustment algorithms are also found in the litera-

ture, especially the familiar standard adjustment model where only the data points 

of the target system are subjected to errors while those of the start system are taken 
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as error-free quantities (fixed). In the present study, the emphasis will be given on 

EIV (Errors-In-Variables) models where both data points are considered as obser-

vations. Most of the LS based solutions, that have been given focus the last few 

years, are based on the general mixed adjustment model of observations, known 

also as the Gauss-Helmert model (GHM), e.g., Jefferys 1980, Dermanis and Fotiou 

1992, Schaffrin and Wieser 2008, Neitzel 2010, Simkooei and Jazaeri 2012, Sneew 

et al. 2015, Pan et al. 2015. 

 

 

2. Problem formulation 

For any point in 2D, the functional similarity transformation model is expressed by 

two equations, written in matrix form,     

 

a b

x

a b
y

tX cos t sin t x
m

tsin t cos tY y

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥−⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (2.1) 

where (t, m, tx, ty) are the transformation parameters; t the rotation angle, m the 

scale factor and (tx, ty) the translations (shifts) of the start system (b) with respect to 

the target system (a). Applying model (2.1), coordinates 
b b(x ,y )  are transformed 

to 
a a(X ,Y )  as shown in Figure 1. 

 

Υ
xi

y

tx t

Xi

yi

xty Yi

Χ
 

Fig. 1. 2D similarity transformation model: Data points and coordinate systems 

 

Introducing two independent parameters (c, d) instead of (t, m), 

 c mcost, d msin t= =     
2 2

[m c d , t arctan(d / c)]= + =  (2.2) 

model (2.1) becomes linear with respect to c and d, 
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a b

x

a b
y

tX c d x

td cY y

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥−⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (2.3) 

or, 

 

a b b

a b b
x

y

c

dX x y 1 0

tY y x 0 1

t

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤
⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.4) 

According to (2.4), having two common points (n =2) we have four linear equa-

tions with four unknowns; therefore, the transformation parameters can be deter-

mined. This is a minimum requirement so that any error in the data points cannot 

be controlled and is absorbed by the estimated parameters. More common points 

(n>2) provide error control, more accurate solution and statistical testing. Applying 

the LS criterion, we obtain a unique optimum solution for the transformation pa-

rameters and other related estimations, all of them being of maximum accuracy 

(best estimations). In general, coordinates 
a a(X ,Y )  and 

b b(x ,y )  are considered as 

observable parameters. Special cases could be also derived as it is the next model. 

 

 

3. The standard least squares model 

A common case in practice accounts for errors associated only with 
a a(X ,Y )  while 

b b(x ,y )  are taken as (absolutely) known quantities (x,y) . In this case, (2.4) is 

written as 

 

a

a
x

y

c

dX x y 1 0

ty x 0 1Y

t

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.1) 

known in this form as the Gauss-Markov Model (GMM).  

Substituting the observables in (2.5) with their corresponding observations and er-

rors, i.e., 
a a

X Y
X X v , Y Y v= − = − , we have,  

 
X

x Y

y

c

d vX x y 1 0

t vY y x 0 1

t

⎡ ⎤
⎢ ⎥

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥= + ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.1) 
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or  

 

1

n

1

n

X
1 1 1

Xn n n

x1 1 1 Y

y

n n n Y

vX x y 1 0

c

vcX x y 1 0

tY y x 0 1 v

t

Y y x 0 1 v

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

�� � � � �

� � � � � �

 (3.2) 

In matrix notation, the linear system (3.2) is written,  

 
b α

= +y Az v  (3.3) 

where, 
b

y  is the (2n, 1) vector of observations, A the (2n, 4) design matrix, 
α

z  the 

(4, 1) vector of unknown (transformation) parameters and v the (2n,1) vector of 

random errors. 

In the following the LS method of observation equations or method of parameters 

is used and analytical closed-form solutions are presented both for equal and dif-

ferent precision of the observations. 

 

3.1. Equal measurement precision 

For n data points and assuming observations of equal precision, i.e., 

i i

2 2 2

X Y
=σ σ = = σ� , their covariance matrix is 2 2

Q= σ = σC I  (Q = I) with the ref-

erence variance 2
σ  known or unknown. In either case the weight matrix 

1−
= =P Q I  can be used. For an unknown 2

σ  (equal weights with unknown preci-

sion) an unbiased estimate has to be determined, needed for the estimation of co-

variance matrices of any parameters estimates. Having thus equal weights, that is 

i
p 1= , the LS solution is obtained under, 

 
i i

2 2

X Y
(v v ) min+ =∑ . (3.4) 

The well-known LS algorithm of observation equations method (e.g., Mikhail and 

Ackermann 1976, Dermanis and Fotiou 1992), results in the following best linear 

unbiased estimations a

ẑ  either 2
σ  is known or unknown, that is, 

 
i i i i i i i i

2 2 2 2

i i i i

x X y Y y X x Yˆĉ d
(x y ) (x y )

+

+ +

−∑ ∑ ∑ ∑
= =

∑ ∑

� � � �

� � � �

 (3.5) 

 
x x y y

ˆ ˆ ˆ ˆˆ ˆˆ ˆ ˆ ˆ ˆ ˆt s (cx dy) X cx dy, t s ( dx cy) Y dx cy= − + = − − = − − + = + −
� �

 (3.6) 

where, (x,y)� �  are the reduced (x,y)  coordinates of the start system to their cen-
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troid (x, y)  computed by  

 
i i i i

x x x, y y y= − = −� � , 
i i

x y
x , y

n n

= =

∑ ∑
  (3.7) 

and 
x y
ˆ ˆ(s , s )
� �

 the translations of the reduced system, equal to the centroid (X,Y) . 

We remind that centroid reduction leads to a diagonal structure of the normal equa-

tion matrix as the sum of such reduced coordinates is always zero.  

In addition, the estimations of errors, observables and the a-posteriori variance, are 

given by 

 
i i

X i i i x Y i i i y
ˆ ˆˆ ˆˆ ˆˆ ˆv X (cx dy t ), v Y ( dx cy t )= − + + = − − + +  (3.8) 

 
i i

i i X i i x i i Y i i y
ˆ ˆˆ ˆˆ ˆˆ ˆˆ ˆX X v (cx dy t ), Y Y v ( dx cy t )= − = + + = − = − + +  (3.9) 

 i i

2 2

X Y2
ˆ ˆ(v v )

ˆ
2n 4

+

σ =

−

∑
  (3.10) 

where the posteriori variance can be used instead of an unknown 2
σ  and be statis-

tically tested against an priori 2

o
σ .  

Note that estimations of the scale factor and the rotation angle ˆˆ(m, t)  can be com-

puted by (2.2), realizing that the rotation angle as given by the inverse tangent 

function (-π/2 ≤ t ≤+π/2) should be reduced to the correct quadrant, e.g. considering 

positive counterclockwise (0≤ t <2π). 

The precision of the estimated parameters is given by the respective variances or 

standard deviations, that is,  

 
2 2 2 2

ˆ ˆ ˆc c2 2 d

i i

1
ˆ ˆ ˆ

(x y )+

σ = σ σ = σ
∑ � �

 (3.11) 

 
x y x

2 2

2 2 2 2

ˆ ˆ ˆt t t2 2

i i

x y 1
ˆ ˆ ˆ

n(x y )+

⎛ ⎞+
σ = σ + σ = σ⎜ ⎟⎜ ⎟∑⎝ ⎠� �

 (3.12) 

Note again that the posteriori variance is used in case of an unknown 2
σ .  

Also, the transformed 
s s(x ,y )  coordinates of any non-common point (x, y) of the 

start system is given by  

 

s

x

s
y

ˆ ˆˆ tx c d x

ˆˆ tyˆy d c

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤
= +⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥− ⎣ ⎦⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦
 (3.13) 

Applying the law of error propagation, precision measures can be computed for 

any estimation, e.g. for the transformed coordinates. 
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Sometimes, for some reason, distances (scale, size of objects) between any pair of 

points should be preserved, constraining thus m=1 and performing a so called rigid 

transformation (only rotation and translation). This condition can be fulfilled after 

the estimation of four transformation parameters, rearranging the estimated pa-

rameters and realizing that the rotation is the same, i.e., ˆ ˆm 1, t t arctan(d / c),′= = =  

c cos t, d sin t,′ ′= =  
x
t̂ X (c x d y)′ ′ ′= − + , 

y
t̂ Y ( d x c y)′ ′ ′= − − + . With these new 

parameter estimations, other estimations are computed, following the adjustment 

algorithm. Similar conditions, as for example considering zero rotation or zero 

translation, can be easily treated.  

In geodesy and surveying it is a common practice to keep unaltered the coordinates 

of common points in the target system, when they are e.g. control points of a geo-

detic datum, although estimations of errors for these points have been computed. In 

doing so, we have a best fit of the start system to the target system and the errors 

just give a measure of the fit or a measure of assessment of the used transformation 

model.  

 

3.2. Different measurement precision 

Considering different precision for each observation 
i i

(X ,Y ) , we have, 

1 n 1 n

2 2 2 2

X X Y Y
≠ ≠ ≠ ≠ ≠σ σ σ σ� � . The reduction of 

i i
(x ,y )  to the weighted centroid 

does not lead to a diagonal normal equation matrix and a simple closed-form solu-

tion; therefore, the solution is carried out by inverting a full (4,4) normal equation 

matrix.  A simplification occurs when the same precision or weight is associated 

with the coordinates 
i i

(X ,Y )  of each point, so that 
i i

2 2 2

X Y i
= =σ σ σ .  

Actually, 
2 2 2

i i
q=σ σ , with 2

σ  a reference variance, known or unknown. Incorporat-

ing weights in this approach, 2
= σC Q , where 

2 2 2 2

1 n 1 n
diag(q ,...,q ,q ,...,q )=Q ,  

and 
1 2 2 2 2

1 n 1 n 1 n 1 n
diag(1/ q ,..,1/ q ,1/ q ,..,1/ q ) diag(p ,..,p ,p ,..,p )P Q

−

= = =  . 

Applying again the LS criterion with weights,  

 
i i

2 2

i X Y
p (v v ) min+ =∑  (3.14) 

and performing the centroid reduction of 
i i

(x ,y ) , the LS estimations are given by 

the following simple again expressions, comparable to the above (3.5) and (3.6), 

 
i i i i i i i i i i

2 2 2 2

i i i i i i

p (x X y Y ) p (y X x Y )ˆĉ d
p (x y ) p (x y )

+

+ +

−∑ ∑
= =

∑ ∑

� � � �

� � � �

 (3.15) 

 
x x y y

ˆ ˆ ˆ ˆˆ ˆˆ ˆ ˆ ˆ ˆ ˆt s (cx dy) X cx dy, t s ( dx cy) Y dx cy= − + = − − = − − + = + −
� �

 (3.16) 

where, (x,y)� �  are the reduced coordinates of the start system to their weighted cen-

troid (x, y)  given by  
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i i i i

x x x, y y y= − = −� �  
i i i i

i i

p x p y
x , y

p p
= =

∑ ∑
∑ ∑

  (3.17) 

and 
x y
ˆ ˆ(s , s )
� �

 the translations of the reduced system, equal to the weighted centroid 

i i i i i i
(X p X / p , Y p Y / p )= =∑ ∑ ∑ ∑ . In a similar manner, the estimations of er-

rors and observables are computed as above from (3.8, 3.10) while the a posteriori 

variance is given by 

 i i

2 2

i X Y2
ˆ ˆp (v v )

ˆ
2n 4

+

σ =

−

∑
  (3.18) 

In addition, precision estimates for the transformation parameters are obtained by 

 
2 2 2 2

ˆ ˆ ˆc c2 2 d

i i i

1
ˆ ˆ ˆ

p (x y )+

σ = σ σ = σ
∑ � �

 (3.19) 

 
x y x

2 2

2 2 2 2

ˆ ˆ ˆt t t2 2

ii i i

x y 1
ˆ ˆ ˆ

pp (x y )+

⎛ ⎞+
σ = σ + σ = σ⎜ ⎟⎜ ⎟∑⎝ ⎠∑� �

 (3.20) 

In the literature and particularly in cadastral surveys and GIS (e.g., Deakin 2007), 

the presented algorithm is applied with a different interpretation of the observation 

errors, where they supposed to consist of two parts; one part related to the observa-

tion errors in the target system and the other to the transformed errors of the start 

system. Though this is a reasonable hypothesis and practically workable, a rigorous 

treatment demands for a different model, presented below, as coordinates on both 

systems are subjected to errors.  

 

 

4. The modified mixed model of adjustment 

Now we come up to the point that both 
a a(X ,Y ) , 

b b(x ,y )  are observable parame-

ters and (X,Y) , (x,y)  the corresponding observations. It is evident that the func-

tional model is a mixed-type model and should be treated according to the general 

method of LS, also called Total LS (TLS) and Weighted TLS (WTLS), e.g. Rossi-

kopoulos and Fotiou 1993. In addition, this model belongs to the so called EIV (Er-

rors In Variables) models that have been in the spotlight the last few years. Actu-

ally, we have to do with an adjustment model of observations of mixed equations, 

known traditionally in geodetic community as a Gauss - Helmert Model (GHM). 

Recently focus has been given on a slight extension of GHM, called here MMM 

(Modified Mixed Model), e.g, Simkooei and Jazaeri 2012, Pan et al. 2015, Fotiou 

2017. 
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4.1. The modified mixed model of the similarity transformation 

According to the LS method of mixed equations, any common point gives two 

(non-linear) mixed equations, in matrix form, 

 

a b
xi i

a b
yi i

tX xc d

td cY y

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥−⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (4.1) 

or 

 

b a
xi i i

b a
yi i i

tf x Xc d 0

tg d c 0y Y

⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + − =⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

,    i = 1,…, n. (4.2) 

Following the linearization process, we expand (4.2) in a Taylor series up to first 

order terms, around the approximate values 
o o o o

x y
(c ,d , t , t )  for the unknown pa-

rameters and 
o o o o

i i i i
(X ,Y ,x ,y )  for the unknown observables. We underline that the 

modification or a slight extend in MMM, starts with the series expansion around 

the approximate point (rigorous theory) and not around the observed point 

i i i i
(X ,Y ,x ,y )  as used in GHM. In many cases the difference between the two 

models is practically insignificant. 

It follows that, if [ ]
T

i i i
f g=F , the Taylor series is written as, 

o o o o oi i i i
i i x x y y

x yo o o o

(c c ) (d d ) (t t ) (t t )
c d t t

∂ ∂ ∂ ∂
= + − + − + − + − +

∂ ∂ ∂ ∂

F F F F
F F  

a o a o b o b oi i i i

i i i i i i i ia a b b

i i i io o o o

(X X ) (Y Y ) (x x ) (y y ) ..
X Y x y

∂ ∂ ∂ ∂
+ − + − + − + − + =
∂ ∂ ∂ ∂

F F F F
0  (4.3) 

Understanding that  

 o

c c c= + δ ,  o

d d d= + δ ,  o

x x x
t t t= + δ ,  o

y y y
t t t= + δ ,  (4.4) 

 
i

a

i i X
X X v= − , 

i

a

i i Y
Y Y v= − ,  

i

b
i i xx x v= − , 

i

b
i i yy y v= − ,  (4.5) 

 
i

o o

i i X
X X v= − , 

i

o o

i i Y
Y Y v= − ,  

i

o o
i i xx x v= − , 

i

o o
i i yy y v= − , (4.6) 

 

o o o o o oo
i i x iio

i o o o o o oo
i i y ii

c x d y t Xf

d x c y t Yg

⎡ ⎤⎡ ⎤ + + −
⎢ ⎥= =⎢ ⎥
− + + −⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

F  (4.7) 

and accounting for the partial derivatives, after some arrangements, (4.3) becomes 
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i i

i i

o oo o o
i x i yi i x i

o o o o o
xi i y i i y i x

y

c

(x v ) (y v ) 1 0c x d y t X d

td x c y t Y (y v ) (x v ) 0 1

t

δ⎡ ⎤
⎢ ⎥⎡ ⎤⎡ ⎤ − −+ + − δ⎢ ⎥⎢ ⎥⎢ ⎥ + +
⎢ ⎥δ⎢ ⎥− + + −⎢ ⎥ − − −⎣ ⎦ ⎣ ⎦ ⎢ ⎥
δ⎢ ⎥⎣ ⎦

 

  

i

i

i

i

X

o o
Y

o o
x

y

v

v1 0 c d 0

v 00 1 d c

v

⎡ ⎤
⎢ ⎥

⎡ ⎤− ⎢ ⎥ ⎡ ⎤
− =⎢ ⎥ ⎢ ⎥ ⎢ ⎥

− − ⎣ ⎦⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎣ ⎦

 (4.8) 

In a detailed matrix structure, (4.8) is written as, 

 

1 1

n n

1 1

n

o oo o o
1 x 1 y1 1 x 1

o oo o o
n x n yn n x n

o o o o o
1 1 y 1 1 y 1 x

o o o o o
n n y n n yn n x

(x v ) (y v ) 1 0c x d y t X

(x v ) (y v ) 1 0c x d y t X

d x c y t Y (y v ) (x v ) 0 1

d x c y t Y (y v ) (x v ) 0 1

⎡ ⎤− −⎡ ⎤+ + −
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ − −+ + − ⎢ ⎥⎢ ⎥ + ⎢ ⎥⎢ ⎥− + + − − − −⎢ ⎥⎢ ⎥
⎢⎢ ⎥
⎢⎢ ⎥
⎢− + + −⎢ ⎥ − − −⎣ ⎦ ⎣ ⎦

� � � ��

� � � � �

x

y

c

d

t

t

δ⎡ ⎤
⎢ ⎥δ⎢ ⎥ +
⎢ ⎥δ
⎢ ⎥

⎥ δ⎢ ⎥⎣ ⎦
⎥
⎥

 

  

X

o o
Yn n n n

2n,1o o
xn n n n

y

c d

d c

⎡ ⎤
⎢ ⎥⎡ ⎤− ⎢ ⎥− =⎢ ⎥
⎢ ⎥− −⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

v

vI 0 I I
0

v0 I I I

v

 (4.9) 

where, 

 
1 n 1 n

T T

X X X Y Y Y
v v , v v⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦v v� �  (4.10) 

 
1 n 1 n

T T

x x x y y yv v , v v⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦v v� �  (4.11) 

or, in brief 

 + − =w Az Bv 0  (4.12) 

Model (4.12) is the linear system of the general adjustment model with a slight 

modification in the design matrix A, where the first two columns depend on errors 

of the observations of the start system while matrix B is unaffected. 

The LS solution is then obtained using the method of Lagrange multipliers, i.e., 

 ( )
i i i i i i i i

2 2 2 2 T
X X Y Y x x y yp v p v p v p v min+ + + = =∑ v Pv ,    under     i

=F 0  (4.13) 
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The adjustment algorithm is applied through an iterative process, where the initial 

approximate values 
o o o o

x y
(c ,d , t , t )  and 

i i

o o

x y
(v ,v )  are properly updated until con-

vergence is achieved.  (4.14) 
 
In order to facilitate the computations and/or the development of a software, a few 

details for the implementation of the algorithm are given below. 

First, we form the (diagonal) covariance and weight matrices, 

 
2 2

X Y x ydiag( , , , )= σ = σC Q Q Q Q Q  (4.15) 

 
1 1 1 1 1

X Y x y X Y x ydiag( , , , ) diag( , , , )
− − − − −

= = =P Q Q Q Q Q P P P P  (4.16) 

where 2
σ  is known or unknown, and 2

σ̂  is used instead of an unknown one.  

The normal equation system is then formed by,  

 
T 1 T 1( ) ( )− −

=A M A z A M w      or    �z = -u  (4.17) 

where the (2n, 2n) symmetric matrix M and the (2n, 1) column matrix w are, 

 

1 1 1

n n n

1 1 1

n n n

2
f f g

2
f f g f fg1 T

2
fg gf g g

2
f g g

−

⎡ ⎤σ σ
⎢ ⎥
⎢ ⎥
⎢ ⎥

σ σ ⎡ ⎤⎢ ⎥
= = ⎢ ⎥⎢ ⎥

σ σ ⎢ ⎥⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥σ σ⎣ ⎦

C C

M = BP B
C C

� �

� �

 (4.18) 

 

o o o
1 1 x 1

o o o
n n x n f

o o o
g1 1 y 1

o o o
n n y n

c x d y t X

c x d y t X

d x c y t Y

d x c y t Y

⎡ ⎤+ + −
⎢ ⎥
⎢ ⎥
⎢ ⎥+ + − ⎡ ⎤⎢ ⎥= = ⎢ ⎥⎢ ⎥− + + − ⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥
− + + −⎢ ⎥⎣ ⎦

w

w

w

�

�

 (4.19) 

Matrix Μ consists of four diagonal (n, n) submatrices facilitating its analytic inver-

sion by means of well-known algorithms for partitioned matrix structures. The el-

ements of M are then given by, 

 
i

i i i

o2 o2
2
f

x y X

c d 1

p p p
σ = + + ,   

i

i i i

o2 o2
2
g

x y Y

d c 1

p p p
σ = + + ,   

i i

i i

o o o o
2
f g

x y

c d c d

p p

−
σ = +  (4.20) 
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and the inverse 1−
M  is formed as, 

 

1 1 1

n 1 1

1 1 1

1 1 n

2 2
g f g

1 1

2 2
g f g

gr fgrn 11

2 2
fgr frf g f

1 1

2 2
f g f

1 n

r r

r r

r r

r r

−

⎡ ⎤σ σ
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥σ σ
⎢ ⎥−

−⎡ ⎤⎢ ⎥
= = ⎢ ⎥⎢ ⎥ −σ σ ⎢ ⎥⎣ ⎦⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

σ σ⎢ ⎥
−⎢ ⎥

⎣ ⎦

C C

M
C C

� �

� �

 (4.21) 

where, 
i i i i

2 2 2
i f g f gr ( )= σ σ − σ . 

In addition, the elements of matrices �, u of the normal equation system, from 

which the LS solution is obtained, are given analytically, based on the above struc-

ture. Putting, 

 
i i i i

o o o o
i x i y i x i ybx(i) (x v ), by(i) (y v ), bxy(i) (x v )(y v )= − = − = − −  (4.22) 

the elements of �, 

 

11 12 13 14

22 23 24T 1

33 34

44

N N N N

N N N

N N

sym. N

−

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

Ν = Α M A   (4.23) 

are derived, i.e., 

 
i i i i

2 2 2 2
11 g f f g iN {(bx(i) by(i) 2bxy(i) ) / r }= σ + σ − σ∑   

 
i i i i

22 2 2
12 g f f g iN {[bxy(i)( ) (bx(i) by(i) ) )] / r }= σ −σ + − σ∑  

 
i i i

2
13 g f g iN {(bx(i) by(i) ) /r }= σ − σ∑ ,  

i i i

2
14 f f g iN {(by(i) bx(i) ) /r }= σ − σ∑  

 
i i i i

2 2 2 2
22 g f f g iN {(by(i) bx(i) 2bxy(i) ) / r }= σ + σ + σ∑  

 
i i i

2
23 g f g iN {(by(i) bx(i) ) /r }= σ + σ∑ ,  

i i i

2
24 f g f iN {( by(i) bx(i) ) /r }= − σ − σ∑  

 
i

2
33 g iN ( / r )= σ∑ ,   

i i
34 f g i

N ( / r )= −σ∑ ,   
i

2
44 f iN ( / r )= σ∑  
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Moreover, the elements of u, 

 [ ]
TT 1

1 2 3 4
u u u u

−

u = Α M w =   (4.24) 

are derived by, 

 
i i i i i i i i

2 2
1 f i g i f g g i f g i f iu {[w (x y ) w ( x y )] / r }= σ − σ + − σ + σ∑  

 
i i i i i i i i

2 2
2 f i g i f g g i f g i f iu {[w (y x ) w ( y x )] / r }= σ + σ + − σ − σ∑  

 
i i i i i

2
3 f g g f g iu {(w w ) / r }= σ + σ∑ ,   

i i i i i

2
4 f f g g f iu {( w w ) / r }= − σ + σ∑  

Next the corrections of parameter estimations are given by, 

 
T

1
x y

ˆ ˆ ˆˆˆ c d t t
−⎡ ⎤δ δ δ δ = −⎣ ⎦z = Ν u  (4.25) 

and the parameter estimates by 

 
T T

a o o o o o
x y x x y y

ˆ ˆˆ ˆ ˆ ˆˆ ˆˆ ˆc d t t c c d d t t t t⎡ ⎤ ⎡ ⎤= = + + δ + δ + δ + δ⎣ ⎦ ⎣ ⎦z z z =   (4.26) 

understanding that an inversion algorithm, e.g. Cholesky decomposition, is needed 

for 1−
Ν . Note that the elements of Ν  could be very large and/or very small, the 

matrix inversion algorithm should be tested by double precision arithmetic. 

Going on with the adjustment algorithm, the estimation of errors and observable 

parameters (adjusted observations) are, 

 

X

Y 1 T 1

ˆ

ˆ
ˆ ˆ)

ˆ

ˆ

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥ =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

x

y

v

v
v = P B M (w + Az

v

v

  (4.27) 

 
i

i

Xi i

i Yi

ˆ v̂X X

ˆ ˆY vY

⎡ ⎤ ⎡ ⎤⎡ ⎤
= −⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

, 
i

i

xi i

i i y

v̂x̂ x

ˆ ˆy y v

⎡ ⎤⎡ ⎤ ⎡ ⎤
= − ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦
 (4.28) 

For the error estimations, and taking, 

 
i

o o o

f i 1 1 x 1 x
ˆ ˆˆcf (i) w df (c x d y t X ) (bx(i) c by(i) d t )= + = + + − + δ + δ + δ  (4.29) 

 
i

o o o
g i i i y i y

ˆ ˆˆcg(i) w dg ( d x c y t Y ) ( bx(i) d by(i) c t )= + = − + + − + − δ + δ + δ  (4.30) 

we reach at the analytic expressions, 

 
i i i i i

2
X g f g i Xv̂ [( cf (i) cg(i) ) / r ] / p= − σ + σ  (4.31a) 
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i i i i i

2
Y f g f i Yv̂ [(cf (i) cg(i) ) / r ] / p= σ − σ  (4.31b) 

 
i i i i i i i i i

o 2 o o o 2
x g f g i x f g f i xv̂ [(c d )cf (i) / r ] / p [( c d )cg(i) / r ] / p= σ + σ + − σ − σ  (4.32a)  

 
i i i i i i i i i

o 2 o o o 2
y g f g i y f g f i yv̂ [(d c )cf (i) / r ] / p [( d c )cg(i) / r ] / p= σ − σ + − σ + σ  (4.32b) 

Also, the estimation of an unknown variance factor, i.e. the posteriori variance, is  

 
( )

i i i i i i i i

2 2 2 2

X X Y Y x x y y2
ˆ ˆ ˆ ˆp v p v p v p v

ˆ
4n 4

+ + +

σ = =

−

∑
  

  

T T T T

X X X Y Y Y x x x y y y
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

4n 4

+ + +

=

−

v P v v P v v P v v P v

 (4.33) 

From the covariance matrix of the transformation parameters, which is the inverse 
2 1−

σ � , precision measures can be computed as well, e.g. the diagonal elements 

express the variances of the parameter estimates. 

The implementation of the MMM algorithm start with initial approximate values 
o o o o

x y
(c ,d , t , t )  computed by a suitable way, preferably by the standard LS solution 

presented above in chapter 3 with equal observation precision. In parallel, the ini-

tial values for the approximate errors in matrix A are taken as zero 

i i

o o

x y
(v 0,v 0)= = . In this way, the estimations of corrections 

x y

ˆ ˆ ˆĉ, d, t , tδ δ δ δ  and 

i i
x y

ˆ ˆv , v  are obtained. In the next iteration new approximate values are used, as 

derived by the previous solution and new estimates 
(1) (1) (1) (1)

x y
ˆ ˆ ˆĉ , d , t , tδ δ δ δ  and 

i i

(1) (1)
x y
ˆ ˆv , v  are again obtained. With these better values, the second iteration starts 

and so on until a convergence is achievement.  

It should be noted that within each iteration, though it is not necessary, other up-

dated estimates, such as  
i i

(k) (k) (k) (k)
i i i ii iX Y

ˆ ˆˆ ˆX X v , Y Y v= − = −  and 2(k)
σ̂ , could be 

also obtained, instead of the end of the whole process, resulting in their final ad-

justed values.   

Convergence criterions for the successive absolute differences are set, usually for 

the updated transformation parameters or even for all the updated parameters. The 

threshold depends on the degree of closeness of the initial approximate values to 

their best values and on the level of accuracy needed. For example, if the observa-

tions are UTM map coordinates given with ten significant figures and of mm-

precision, a threshold εc = 1.0E-10 to 1.0E-12 for c and d, i.e., 
(i 1) (i)

c
ˆ ˆ| c c |+

− ≤ ε , 

and εt = 1.0E-03m to 1.0E-05m for the translations, i.e., 
(i 1) (i)

x x t
ˆ ˆ| t t |+

− ≤ ε , could 

be an adequate choice. A good practice is to use double precision arithmetic and 

round properly at the end of the whole process. 

The above estimations are Best Linear Unbiased Estimations (BLUE) according to 

the LS principles. A statistical evaluation of the model, could be a global test of the 
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variance and data snooping for detection of outliers. In many practical applications, 

without demanding high accuracy, instead of statistical hypothesis testing for out-

liers a marginal value/threshold, e.g. 3 to 5 times the precision of the observations 

could be set. The fact that matrix A depends on observation errors does not have a 

significant impact on the estimation of covariance matrices. 

A very good approximation to the above rigorous MMM solution is given by the 

GHM as traditionally applied. The only difference with the presented MMM algo-

rithm is that the design matrix A in the GHM depends on 
i i

(x , y )  and not on 

i

o o
i i x(x x v )= − , 

i

o o
i i y(y y v )= − , so that A remains constant and the transformation 

parameters are the only ones that are updated. 

The similarity transformation adjustment algorithm with MMM covers also the 

case with equal precision as a special case, but it is preferable to use the above 

closed-form solution. Using the GHM with observations of equal precision the pa-

rameter estimations is independent of their approximate values and are identical to 

those derived by the standard LS adjustment (GMM). The same holds if the preci-

sion of the observations is the same for each coordinate system but different be-

tween the two systems (e.g. Dermanis and Fotiou 1992). 

In this study the issue with the transformation of the non-common points, using 

MMM or GHM model is not discussed. However, it should be realized that in a 

rigorous transformation, the non-common points could be correlated to the com-

mon ones and their transformation should depend on the precision of the estimated 

parameters (e.g., Fotiou and Rossikopoulos 1993, Kaltsikis et al. 1994). 

 

 

5. Examples and comparison of the results 

The LS iterative MMM algorithm is easily understood and implemented by means 

of a software created and/or adapted to particular needs. Moreover, the traditional 

LS models could be included as special cases. Especially, when the MMM or the 

traditional GHM is used, the standard GMM can provide approximate values for 

the transformation parameters; on the other hand, the number of iterations against 

unsatisfying initial values is almost minimized. 

In this study, a Fortran program, written in 'Simply Fortran environment', was cre-

ated and tested using data of numerical examples taken from the literature. In the 

following the results, obtained by means of the above mixed modified model and 

the traditional models, are presented and compared with the published results. 

Four examples are presented in tabular form to facilitate reading and comparison. 

In all examples both sets of coordinates are observations with equal (example 1 and 

4) or different precision (example 2 and 3). In addition, results from the standard 

GM model are given for comparison reasons and as a means to provide approxi-

mate values to the other models.  
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In Tables 1 to 3, and Tables 4 to 6 two examples are presented whose data have 

been taken from Neitzel (2010). In the first example data have equal precision 

(pi=1) and the results are almost identical among the presented models, the only 

difference being in the number of iterations. Having equal weights, as also happens 

in example 4, it is verified the theoretical conclusion that the standard GMM model 

gives identical solution with that of GHM and MMM except the error estimates 

and whatever is related to those, as naturally expected since in the GMM only one 

set of data points is subjected to errors. 

 

Table 1: Observations of equal precision 

Example 1: Data taken from Neitzel (2010)  

Target system (a) Start system (b) 
Point 

X(mm) Y(mm) x(mm) y(mm) 

1 -117.478 0 17.856 144.794 

2 117.472 0 252.637 154.448 

3 0.015 -117.410 140.089 32.326 

4 -0.014 117.451 130.400 267.027 

Weights 
Point 

X
p  

Y
p  

x
p  

y
p  

i 1 1 1 1 

 

Table 2. Models and results of Example 1 

Neitzel (2010) This study 

Parameters 'Iterated linearized 

GHM' 

Modified Mixed  

Model (MMM) 

Traditional 

GHM 

Standard 

GMM 

ĉ  0.99900748078 0.99900746914 0.99900746914 0.99900746914 

d̂  -0.04109806319* 0.04109806272 0.04109806272 0.04109806272 

x
t̂  (mm) -141.2628 -141.2628 -141.2628 -141.2628 

y
t̂  (mm) -143.9316 -143.9316 -143.9316 -143.9316 

m̂  0.99985248784 0.99985247619 0.99985247619 0.99985247619 

t̂  (= -t ) 

t̂  (0≤t<360º) 

-2.3557567* 

2.3557567 2.3557567 2.3557567 

T
ˆ ˆv Pv  0.000643  0.000643 0.000643 0.001286 

2
σ̂  0.0001608 ? 0.000054 0.000054 0.000097 

approx. values 

from Neitzel 

'several' 

iterations 
3 iter. 3 iter. - 

approx. values 

from GMM 
not given 0 iter. 0 iter. - 
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Table 3. Estimation of errors (mm) of Example 1 

 Neitzel (2010) / This study(MMM) 

Point X
v̂  

Y
v̂  

x
v̂  y

v̂  

1 
-0.0021 

-0.0021 

0.0076 

0.0076 

0.0024 

0.0024 

-0.0075 

-0.0075 

2 
0.0005 

0.0005 

0.0099 

0.0099 

-0.0001 

-0.0001 

-0.0099 

-0.0099 

3 
-0.0004 

-0.0004 

-0.0074 

-0.0074 

-0.0000 

 0.0000 

 0.0075 

 0.0075 

4 
-0.0020? 

 0.0020 

-0.0101 

-0.0101 

-0.0024 

-0.0024 

 0.0100 

 0.0100 

 

In the second example (Tables 4 to 6) with different data precision, some differ-

ences occur related to the transformation parameters, especially to the translations. 

However, it is remarkable to see that the error estimates are almost identical and 

the differences are less than one mm, meaning that the two apparently different sets 

of parameters are consistent or practically equivalent. It should be underlined that 

the order of magnitude of the coordinates in relation to the used weights have a 

direct impact on the magnitude of the elements of the normal equation matrix 

(large difference among them) and on its inversion. We have tried a solution with 

reduced coordinates but the solution did not change.  

 

Table 4. Observations of different precision 

Example 2:  Data taken from Neitzel (2010)  

Target system (a) Start system (b) 
Point 

X(m) Y(m) x(m) y(m) 

3  4540134.2780 382379.8964 4540124.0904 382385.9980 

185  4539937.3890 382629.7872 4539927.2250 382635.8691 

2796  4539979.7390 381951.4785 4539969.5670 381957.5705 

2996  4540326.4610 381895.0089 4540316.2940 381901.0932 

5005  4539216.3870 382184.4352 4539206.2110 382190.5278 

Weights 
Point 

X
p   

Y
p   

x
p   

y
p   

3 10.0000 14.2857 5.8824 12.5000 

185 0.8929 1.4286 0.9009 1.7241 

2796 7.1429 10.0000 7.6923 16.6667 

2996 2.2222 3.2259 4.1667 6.6667 

5005 7.6923 11.1111 8.3333 16.6667 
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Table 5. Models and results of example 2 

Neitzel (2010) This study 

Parameters 'Iterated linearized 

GHM' 

Modified Mixed  

Model (MMM) 

Traditional 

GHM 

Standard 

GMM 

ĉ  0.9999953579 0.99999662060 0.99999662039 0.99999870015 

d̂  -0.0000042049* 0.00000488577 0.00000488572 -0.00000083560 

x
t̂ (m) 29.6432 23.6514 23.6524 16.3939 

y
t̂ (m) 14.7696 17.3781 17.3780 -9.3872 

m̂  0.999995357889 0.99999662061 0.99999662040 0.99999870015 

t̂ ( = -tº ) 

t̂ (0≤t<360º) 

-0.0002409* 

0.0002799 0.0002799 359.9999521 

0.001073 ? T
ˆ ˆv Pv  

(0.000334) 
0.001334 0.001334 0.000579 

0.000179 ? 2
σ̂  

(0.000021) 
0.000083 0.000083 0.000097 

approx. values 

from Neitzel 

'several' 

iterations 
2 iter. 2 iter. - 

approx. values 

from GMM 
not given 0 iter. 0 iter. - 

 

Table 6. Estimation of errors (m) of Example 2 

    Neitzel (2010) / This study 

Point 
X

v̂  
Y

v̂  
x

v̂  
y

v̂  

3 0.0032 

0.0040 

-0.0025 

-0.0026 

-0.0055 

-0.0068 

0.0029 

0.0029 

185 -0.0066 

-0.0074 

0.0080 

0.0077 

0.0066 

0.0073 

-0.0066 

-0.0064 

2796 -0.0011 

-0.0017 

0.0010 

0.0012 

0.0010 

0.0015 

-0.0006 

-0.0007 

2996 -0.0035 

-0.0044 

0.0070 

0.0075 

0.0018 

0.0024 

-0.0034 

-0.0036 

5005 -0.0014 

-0.0015 

-0.0007 

-0.0010 

0.0013 

0.0014 

0.0005 

0.0006 

 

The third example, as shown in Tables 7 to 9, has been taken from Ghilani and 

Wolf (2006) where their solution obtained by the traditional GHM with initial val-

ues given by the GMM. The solution obtained in the first run would be practically 

the same with that of the next as the authors say. Applying also the traditional 
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GHM in this study with the same approximate values, the solution is almost identi-

cal after two iterations. On the other hand, applying the MMM the solution is 

slightly different as far as the scale factor concerned. Error estimates are given only 

as results of MMM and GHM of this study since those from Ghilani and Wolf were 

not available (expected to be almost the same). 

 
Table 7. Observations of different precision 

Example 3: Data taken from Wolf and Ghilani and Wolf (2006)  

Target system (a) Start system (b) 
Point 

X Y x y 

1 -113.000     0.003 0.7637 5.9603 

3       0.001 112.993 5.0620 10.5407 

5    112.998     0.003 9.6627  6.2430 

7       0.001 -112.999 5.3500 1.6540 

Standard Deviations 
Point 

X
σ   

Y
σ   

x
σ   

y
σ   

1 0.002 0.002 0.026 0.028 

3 0.002 0.002 0.024 0.030 

5 0.002 0.002 0.028 0.022 

7 0.002 0.002 0.024 0.026 

 
Table 8. Models and results of example 3 

Ghilani and  

Wolf (2006) 
This study 

Parameters 
Traditional 

GHM 

Modified Mixed  

Model (MMM) 

Traditional 

GHM 

Standard 

GMM 

ĉ  25.38633347 25.38637009731 25.38633349226 25.38693747693 

d̂  -0.815897012* 0.81590125888 0.81589701389 0.81460451818 

x
t̂  -137.2163 -137.2165 -137.2163 -137.2245 

y
t̂  -150.6000 -150.6002 -150.6000 -150.6039 

m̂  25.3994412337 25.39947797853 25.39944125601 25.40000344446 

t̂ ( = -t ) 

t̂ (0≤t<360º) 

-1.8408082* 

1.8408151 1.8408151 1.8378504 

T
ˆ ˆv Pv  -  0.152017 0.152017 0.072937 

2
σ̂  - 0.012668 0.012668 0.018234 

approx. values 

from GMM 
" ≥1 ? " 3 iter. 2 iter. - 
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Table 9. Estimation of errors of example 3 

This study (MMM,GHM) 

Point X
v̂  

Y
v̂  

x
v̂  y

v̂  

1 -0.0000 -0.0000 0.0012 0.0034 

3 0.0000 0.0000 -0.0042 -0.0054 

5 -0.0000 -0.0000 0.0071 0.0002 

7 0.0000 -0.0000 -0.0020 0.0008 

 

Table 10. Observations of equal precision 

Example 4: Data taken from Sneew et al. (2015)  

Target system (a) Start system (b) 
Point 

X(m) Y(m) x(m) y(m) 

1 19405.518 23159.823 14029.640 12786.840 

2 20291.232 22909.817 14914.630 12535.560 

3 20150.035 21778.202 14771.830 11404.660 

4 18598.550 22211.755 13221.620 11840.320 

Weights 
Point 

X
p   

Y
p   

x
p   

y
p   

i 1 1 1 1 

 
Table 11. Models and results of example 4 

Sneew et al.  

(2015) 
This study 

Parameters 
'Mixed model  

approach-II' 

Modified Mixed  

Model (MMM) 

Traditional 

GHM 

Standard 

GMM 

ĉ  1.00040791931* 1.00040791970 1.00040791927 1.00040791927 

d̂  -0.00148198750* -0.00148198793 -0.00148198793 -0.00148198793 

x
t̂ (m) 5389.091 5389.0913 5389.0913 5389.0913 

y
t̂ (m) 10347.006 10347.0061 10347.0061 10347.0061 

m̂  1.000409017 1.00040901739 1.00040901697 1.00040901697 

t̂ (-90º≤t<90º) -0.0848769* (-0.0848769) (-0.0848769) (-0.0848769) 

t̂ (0≤t<360º) (359.9151230) 359.9151230 359.9151230 359.9151230 

T
ˆ ˆv Pv  0.00128479 0.001285 0.001285 0.002571 

2
σ̂  1.070658E-03* 0.000107 0.000107 0.000643 

appr. values 

from Snew 
7 iter. 3 iter. 2 iter. - 

appr. values 

from GMM 
- 0 iter. 0 iter. - 
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The fourth example, depicted in Tables 10, 11 and 12, was taken from Sneew et al. 

(2015), a case with equal data precision. The results among the presented models 

are almost identical noting only the different number of iterations. Parameters m 

and t given by Sneew et al. have been converted to c and d for comparison reasons. 

 
Table 12. Estimation of errors (m) of example 4 

This study(MMM) 

Point 
X

v̂  
Y

v̂  
x

v̂  
y

v̂  

1 0.0068 -0.0154 -0.0068 0.0154 

2 0.0021 0.0170 -0.0021 -0.0170 

3 -0.0052 -0.0040 0.0052 0.0040 

4 -0.0037 -0.0024 0.0037 0.0024 

 

 

6. Concluding remarks 

The Modified Mixed Model (MMM) of the 2D similarity transformation is easily 

and rigorously applied when all observations in both systems have different preci-

sion.  

The presented adjustment algorithm is based on the traditional general/mixed mod-

el (GHM) and is efficiently simplified in terms of analytical expressions given for 

the normal equation matrices and for uncorrelated observations. The adjustment 

process is completed in a number of few iterations. 

MMM is not a new idea and has been revisited recently; however, the simplicity of 

the presented algorithm makes it attractive and efficient for certain applications and 

software development. 

The traditional general model of adjustment gives a solution sufficiently close to 

that of MMM if the former is properly iterated. In case of equal observation preci-

sion MMM and GHM gives the same transformation parameters as those of the 

GMM. The latter is preferred in many cases when transforming coordinates in a 

datum with fixed control (common) points in the target system (best fitting proc-

ess). 

The validity of the presented MMM is also proved by its testing in four published 

examples or experiments. 
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