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Abstract: The mapping problem of an adjusted network from its initial frame to another 

target frame through the Helmert transformation (HT) is discussed in this paper. We present 

an optimal solution which can be easily computed by a closed-form expression in terms of 

appropriate corrections to the standard HT solution that is often used in geodetic practice. 

Its advantage is the minimization of the propagated noise from the initial network coordi-

nates to their estimated values in the target frame, both at the reference and non-reference 

stations. This is accomplished by an additional filtering step within the transformation pro-

cedure which exploits the known covariance structure of the underlying network in both 

frames. The presented approach is a suitable tool for aligning an existing network solution 

to a secular frame such as the ITRF and, as shown in the paper, it can be unequivocally 

related to the constrained network adjustment directly in the target frame. Nevertheless, any 

unmodeled non-secular signals hidden in the initial coordinates will be affected by the 

aforementioned filtering step, and thus the frame alignment methodology presented herein 

is not tuned for Εarth loading studies with respect to a secular reference frame. 

 

 

1. Introduction 

The general prerequisite for the alignment of a geodetic network to ITRF (Al-

tamimi et al. 2011), or to any other global frame of interest, is to process the net-

work measurements along with a subset of reference stations of well known posi-

tions with respect to the desired frame. Using the prior information of the reference 

stations, there are mainly two alternative strategies to express the network coordi-

nates in the desired frame: 

• constraining, either stochastically or absolutely, the coordinates of the selected 

reference stations to their known values during the network adjustment – here-

after called the constrained network adjustment (C�A) approach, or 

• performing the network adjustment in an unknown or weakly defined frame 

(e.g. free-net solution) and then fitting the computed solution to the desired 

frame using a set of Helmert transformation parameters derived from the avail-

able reference stations – hereafter called the Helmert transformation (HT) ap-

proach. 
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Both of these approaches have been widely used in practice for geodetic network 

densification at global, regional and local scale (e.g. Gurtner et al. 1997, Altamimi 

2003, Bruyninx et al. 2013). From a theoretical perspective, the first approach is 

the optimal densification strategy in the sense that the estimated coordinates in the 

desired frame will have the smallest error variances amongst any other linear unbi-

ased methodology using the same network data (provided that the inverse covari-

ance matrix of the reference coordinates is used as a weight matrix in the con-

strained adjustment). The HT approach, on the other hand, is able to preserve the 

network geometry as defined by the actual measurements – something that is not 

ensured by the CNA approach – through a least-squares fit to the desired frame 

using the Helmert transformation either in its full form or in an abridged form by 

omitting some of its original parameters. Its weakness is related to the so-called 

network configuration effect which can produce biases to the transformed coordi-

nates, especially in regional and local networks (Altamimi 2003). This effect stems 

from the ill-conditioning in the least-squares adjustment of the HT model over ref-

erence stations with limited (non-global) spatial support, and it leads to highly cor-

related estimates of the transformation parameters and overly reduced accuracy for 

the transformed coordinates mostly at the non-reference stations. 
 
Following the recent study by Kotsakis et al. (2014), the aim of this paper is to re-

trace the HT-based approach for network densification and to give a revised formu-

lation which improves, in principle, the accuracy of the estimated coordinates in 

the target frame. Compared to the usual frame transformation methodology, the 

presented scheme contains a noise filtering step that reduces the propagated ran-

dom errors from the initial coordinates to their transformed values by exploiting the 

known stochastic characteristics of the underlying network. Despite the common 

availability of the full covariance (CV) matrices of the initial and reference coordi-

nates, this extra step is absent from the determination of Helmert-transformed co-

ordinates in geodetic networks. However, its implementation is easy and it can 

provide an effective “regularization” tool that may compensate, to some extent, the 

ill-conditioning (and the resulting instability) caused by the network configuration 

effect in the final transformation solution. To further support our findings, a useful 

relationship is derived between the CNA and the HT-based estimators for the sta-

tion coordinates in the target frame. Besides its theoretical elegance, such a result is 

particularly useful as not only does it identify the conditions under which the two 

densification schemes give identical results, but it also justifies the frequently sug-

gested use of an abridged HT model in frame alignment problems. 
 
It is noted that the viewpoint of this study lies on the optimal mapping of an initial 

network solution to a target frame which is realized by prior coordinates (and their 

CV matrix) in a subset of the network stations. The aforementioned noise filtering 

step is an essential part of this procedure, yet it could damp useful hidden informa-

tion of geodynamical interest within the initial solution that will not be properly 
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transferred for further scientific inference in the target frame (e.g. study of loading 

displacements). Therefore, the presented approach is a suitable tool for aligning a 

network solution to a secular frame such as the ITRF, but it will not rightly repro-

duce non-secular signals in the transformed coordinates. This should be strongly 

emphasized in order to avoid any confusion to the reader regarding the applicabil-

ity of our proposed optimal estimator, and it will be further underlined in following 

sections of the paper. 

 

 

HT-based network mapping to a target reference frame 

The geodetic formulation of the Helmert transformation is commonly expressed as 

      +′=X X Gθ  (1) 

where X' and X are the Cartesian coordinate vectors of a set of stations with re-

spect to an initial and a target frame, respectively. The vector θ contains the frame 

transformation parameters whereas the matrix G has a simple form originating 

from the Jacobian of the nonlinear similarity transformation under sufficiently 

small orientation and scale differences between the involved frames. The above 

well known model provides the basis for our following analysis in this section. 
 
At first, let us recall the standard HT approach in network densification problems 

which is implemented in two steps as follows. Initially, a least-squares estimate of 

the transformation parameters is obtained from a group of reference stations with 

known coordinates in both frames. We consider the fully weighted case where the 

CV matrices of both coordinate sets are used in the estimation process according to 

the formula: 

     

1 1 1
  

ˆ ( ( + ) ) ( + ) ( )T T− − −

′ ′
′= −X X X Xθ G Σ Σ G G Σ Σ X X  (2) 

Subsequently, the estimated Helmert parameters are employed to transform the 

coordinates of the reference and non-reference stations (denoted by X' and Z' re-

spectively) from their initial frame to the target frame: 

 

st

st

   

ˆ
ˆ+

ˆ
�

⎡ ⎤ ′⎡ ⎤ ⎡ ⎤
⎢ ⎥ = ⎢ ⎥ ⎢ ⎥′⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

x X G
θ

Z Gz

  (3) 

where the superscript ‘st’ indicates that the computed coordinates are obtained by 

the standard HT approach. The matrices G  and G�  denote the Helmert transforma-

tion matrices for the reference and non-reference stations, respectively. Note that 

the coordinate vectors X' and Z' are always correlated with each other as they are 

jointly obtained by a least-squares network adjustment in some initial frame (which 

does not need to be further specified at this point). 
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The solution in Eq. (3) does not arise from a particular estimation principle but it is 

merely deduced by the forward implementation of the HT model. Although it pre-

serves the network geometry as defined by the adjusted measurements in the initial 

frame, this solution lacks the property of minimizing the propagated data noise to 

the transformed network in the target frame. In fact, the random errors of the coor-

dinate vectors X' and  Z' will be fully absorbed into the result of Eq. (3) which 

means that the standard approach does not provide full optimal control upon the 

transformed network coordinates (or, by using “frame terminology”, the realization 

of the target frame in the underlying network through Eq. (3) does not produce sta-

tion coordinates with optimal accuracy level). 
 
Following a more rigorous approach, the HT-based mapping of a geodetic network 

to a target frame can be formulated by the combined system of observation equa-

tions 

     = + XX x v  ,     ( , )X Xv 0 Σ∼  (4) 

        +
′

′ = − XX x Gθ v  ,     ( , )
′ ′X Xv 0 Σ∼  (5) 

        +
�

′
′ = − ZZ z Gθ v  ,     ( , )

′ ′Z Zv 0 Σ∼  (6) 

in conjunction with the data weight matrix 

 

1 

  

−

′ ′ ′

′ ′ ′

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

X

X X Z

Z X Z

Σ 0 0

P 0 Σ Σ

0 Σ Σ

 (7) 

The latter considers the total statistical information that is available in network 

densification problems, whereas the vectors x and z correspond to the true coordi-

nates of the reference and non-reference stations in the target frame. The analytic 

form of the weighted least-squares solution of the previous system is given in Kot-

sakis et al. (2014). Therein it was shown that the adjusted Helmert parameters re-

main the same as in Eq. (2), a fact that is expected since the inclusion of the non-

reference stations into the adjustment procedure does not contribute any additional 

information for the determination of those parameters. On the other hand, the de-

rived least-squares solution of the network coordinates in the target frame differs 

from the classic expression in Eq. (3) as follows (ibid.) 

  

st

1 st

st
+  

ˆ ˆ
ˆ( + ) ( )

ˆ ˆ

′ −

′

′ ′

=

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

X

X X

ZX

x Σx
Σ Σ X x

Σz z

 (8) 

The above formula gives the optimal HT-based estimator in terms of additive cor-

rections to the standard HT-based estimator for network densification purposes. 

Both of these estimators produce a network solution that refers to the same target 
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frame, namely to the one realized by the prior coordinates X of the reference sta-

tions. Their difference is that Eq. (8) leads to station coordinates with smaller error 

variances compared to the standard estimates st
x̂  and st

ẑ , as it has been analyti-

cally shown in Kotsakis et al. (2014). 
 
Evidently, Eq. (3) and Eq. (8) give identical results under the conditions 

′
=XΣ 0  

and 
′ ′

=Z XΣ 0 , none of which ever applies in practice, at least for cases of adjusted 

networks that need to be transformed to another frame. Furthermore, if the prior 

coordinates of the reference stations are assumed errorless ( =XΣ 0 ) then the op-

timal HT solution in Eq. (8) will reproduce their values ( ˆ =x X ) similarly to the 

rationale of the constrained network adjustment directly in the desired frame. In 

general, though, the CNA and HT densification schemes do not give the same es-

timated coordinates at the non-reference stations. This is because each of these 

schemes defines the target frame at a different stage during the network analysis, 

that is, either in tandem with the adjustment of the network measurements (CNA 

approach) or after the adjustment of the network measurements in an arbitrary ini-

tial frame (HT approach). Their actual differences are discussed and evaluated in 

more detail in the following section. 
 
As a final note, let us stress that the inherent filtering in Eq. (8) suppresses the 

noise of the initial solution (X', Z') provided of course that all relevant CV matrices 

are correct or, at least, realistic. This noise-filtering step is missing from the stan-

dard HT solution in Eq. (3), thus making the transformed coordinates ( st
x̂ , st

ẑ ) to 

have larger error variances compared to the result of Eq. (8). On the other hand, in 

frame alignment applications for generating coordinate time series towards geody-

namical investigations (e.g. Tregoning and van Dam 2005, Bevis and Brown 2014) 

such a filtering step may not be desirable as it could weaken the signal information 

hidden in the initial solution. This is especially true when 
′X XΣ Σ� , in which 

case the transformed network will be forced to “follow” the secular character of the 

target frame (e.g. ITRF) thus obscuring any non-secular geophysical signals origi-

nating by unmodeled loading effects. However, the importance of Eq. (8) remains 

in the sense of an effective tool for the combination of independent overlapping 

networks using their full covariance information in their respective frames – see 

also Kotsakis et al. (2014) where the more general case of inter-correlated overlap-

ping networks is treated. 

 

 

Comparison of the CNA and HT-based estimators in network densification 

For the purpose of this study, it is instructive to relate the CNA and HT densifica-

tion strategies when using the same set of reference stations. To compare them in 

an analytic way we consider the normal equations (NEQ) originating from the data 
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processing in the underlying network (before adding any datum constraints and 

after eliminating any auxiliary parameters from the adjustment procedure) 

  

o

o

  

−⎡ ⎤
=⎢ ⎥−⎣ ⎦

x x
� u

z z
 (9) 

where 
o

x  and 
o
z  are the approximate coordinates for the reference and non-

reference stations that are used in the linearization of the NEQ system.  
 
Restricting our attention to GNSS networks, the above system is generally invert-

ible as it already contains the auxiliary datum information from the adopted IGS 

orbits. An initial “free” network solution can therefore be obtained as 

 
o 1

o

    

−

′ ⎡ ⎤⎡ ⎤
= +⎢ ⎥⎢ ⎥

′⎣ ⎦ ⎣ ⎦

xX
� u

zZ

 (10) 

which is given in a reference frame that could be far from the ITRF since it is real-

ized only at the precision level of the IGS orbits (a few cm). This solution can be 

transformed to any desired frame, e.g. ITRF, using the HT-based scheme that was 

described in the previous section.  
 
Alternatively, a constrained solution directly in the desired frame can be obtained 

via the same prior information for the reference stations (X, Σ
X
) according to the 

well known least-squares adjustment formula 

 
o 1 1 1

o

o

ˆ
( ) ( ( ))

ˆ

c

T T

c

− − −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ = + + + −⎢ ⎥
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X X

xx
� H Σ H u H Σ X x

zz

 (11) 

where the auxiliary matrix H has the partitioned form [ ]I 0  in accordance to the 

NEQ partitioning in Eq. (9). In general, the above solution differs from the HT so-

lution of Eq. (8) according to the formula (see proof in the next section) 

   

1 1
ˆ ˆ

ˆ    ( )
ˆ ˆ

c

T T

c

− −

⎡ ⎤⎡ ⎤
⎢ ⎥− = +⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

X

x x
� H Σ H �E θ

z z

 (12) 

where ˆθ  is given by Eq. (2) and E is the transformation matrix for the entire net-

work (reference + non-reference stations) 

   

�

T T⎡ ⎤=
⎣ ⎦

E G G  (13) 

It is seen that the difference of the two solutions depends on the frame transforma-

tion model that is employed in the HT approach. This is not a trivial realization 

and, actually, it can explain the fact that the full (7-parameter) Helmert model 
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might not always be the best choice to obtain a well-expressed GNSS network so-

lution in the desired frame. In fact, Eq. (12) shows that the weighted CNA and HT-

based estimators give the same result under the condition  

T
=�E 0  which implies 

that the selected transformation model should contain only the parameters that cor-

respond to the datum defect of the underlying network (e.g. Blaha 1971, Sillard and 

Boucher 2001). 
 
In the case of GNSS networks the NEQ system in Eq. (9) is generally invertible 

(  

T
≠�E 0 ), thus causing an unavoidable offset between the constrained solution of 

Eq. (11) and the transformed solution of Eq. (8), at least at the non-reference sta-

tions, for any choice of the transformation model. However, if an abridged model is 

employed in the HT approach, e.g. shift-only model, then the difference of the two 

solutions will be dictated by (a linear combination of) the columns of the matrix 

 

T
�E  that correspond only to the selected model parameters. This means that their 

consistency may be improved if the omitted parameters correspond to numerically 

large columns of the aforementioned matrix. Typically, such frame parameters in 

GNSS networks are the rotation angles and the scale factor, which could cause ap-

parent biases to the transformed coordinates in the desired frame relative to the 

weighted CNA solution. 
 
To provide a quick example of the differences among the network densification 

schemes, we have used daily sinex files from regional subnetworks that are regu-

larly processed by local analysis centers (LACs) of the European Permanent Net- 

 

 

Fig. 1 Differences (in mm) of the ITRF2008 coordinates obtained by the weighted C�A 

solution vs. the optimal HT solution (green line) and the standard HT solution (red 

line). The used sinex files refer to the sixth day of GPS week 1809 from the MUT and 

SUT (left and right plots respectively) local analysis centers of the EP� network. 
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work (EPN). Using the unconstrained NEQs of each subnetwork, we computed and 

compared the ITRF2008 coordinates obtained by Eq. (3) (standard HT approach), 

Eq. (8) (optimal HT approach) and Eq. (11) (weighted C�A approach) based on 

the same reference stations in each case. The prior coordinates of the reference sta-

tions and their full CV matrix were extracted from the ITRF2008-TRF-IGS sinex 

file (itrf.ensg.ign.fr/ITRF_solutions/2008/ITRF2008_files.php) and were reduced, 

by their known velocities, to the current epoch of the daily solutions. Some repre-

sentative results from two different subnetworks are given in Fig. 1. The apparent 

biases in the standard HT solution due to the network configuration effect are 

clearly visible, and they amount to several mm in both horizontal and vertical com-

ponents. The optimal HT solution, on the other hand, seems to provide a much bet-

ter agreement with the weighted CNA solution over all stations in every case.  

 

The analytic proof of Eq. (12) 

Starting from Eq. (8), and using the auxiliary matrix [ ]=H I 0 , the optimal HT 

solution can be equivalently expressed as 

     

1st

st

st

ˆ ˆ
ˆ   + + ( )

ˆ ˆ

T T

−

′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′

⎡ ⎤ ⎛ ⎞⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥= −⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠⎣ ⎦

X XZ X XZ

X

ZX Z ZX Z

Σ Σ Σ Σx x
H Σ H H X x

Σ Σ Σ Σz z

 (14) 

Taking into account Eq. (3) and also the matrix notation from Eq. (13), the previ-

ous equation becomes 

     

1
ˆ

ˆ   +  + +
ˆ

ˆ ( )

T T T
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−

′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′

′ ⎛ ⎞⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= ×⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥′⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

′× − −

X XZ X XZ

X

ZX Z ZX Z

Σ Σ Σ Σx X
E θ H Σ H H

Σ Σ Σ Σz Z

X X HE θ

 (15) 

For the sake of convenience we introduce the auxiliary symbols: 

 

o o

o o

ˆ
ˆ  ,    ,  

ˆ

′ ′ ′

′

′ ′ ′

′− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
′= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥′− − ⎣ ⎦⎣ ⎦ ⎣ ⎦

X X Z
ξ

Z X Z

x x X x Σ Σ
ξ ξ Σ

z z Z z Σ Σ
 (16) 

and thus Eq. (15) takes the form 

( )    

1

o
ˆ ˆ ˆ   +  + + ( )T T T T

−

′ ′
′ ′= − − −ξ X ξξ ξ E θ Σ H Σ HΣ H X Hξ x HE θ  (17) 

Using the well known matrix identity (Schaffrin 1983, p. 34, Eq. (A12)) 

 

1 1 1 1( )   ( )− − − −

+ = +DC A BDC I DCA B DCA  (18) 

we have 
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( ) ( )        

1 1
1 1

+  +
T T T T

− −
− −

′ ′ ′ ′
=ξ X ξ ξ X ξ XΣ H Σ HΣ H I Σ H Σ H Σ H Σ   (19) 

which allows us to express Eq. (17) as 

( )   

1
1 1

o
ˆ ˆ ˆ   +  + + ( )T T T T

−
− −

′ ′
′ ′= − − −ξ X ξ Xξ ξ E θ I Σ H Σ H Σ H Σ X Hξ x HE θ   (20) 

Multiplying both sides of the last equation by the matrix 1
+

T −

′ξ XI Σ H Σ H  and after 

some simple algebraic manipulations, we get 

( )   

1 1

o
ˆ ˆ+    +  + ( )T T T− −

′ ′
′= −ξ X ξ XI Σ H Σ H ξ ξ E θ Σ H Σ X x  (21) 

Let us now introduce the auxiliary vector 

o

o

ˆ

ˆ

ˆ

c

c

c

⎡ ⎤−
⎢ ⎥=
⎢ ⎥−⎣ ⎦

x x
ξ

z z

 (22) 

which corresponds to the constrained solution directly in the desired frame using 

the same reference stations with the HT solution. Based on Eq. (11) we obviously 

have  

  

1 1

o
ˆ( )  ( )  T T c− −

− = + −X XH Σ X x � H Σ H ξ u  (23) 

By substituting the last expression into Eq. (21) and after performing straightfor-

ward operations, we get 

( ) ( ) ( )       

1 1ˆ ˆ ˆˆ+    +  + +  
T T T c c− −

′ ′ ′ ′
′= + − −ξ X ξ X ξ ξI Σ H Σ H ξ ξ E θ I Σ H Σ H ξ Σ � I ξ Σ u  (24) 

Considering that the network solution ′ξ  in the initial frame is obtained by a free-

net adjustment (see Eq. (10)) we have  

′ =�ξ u  and 1−
′
=ξΣ � , and thus the last 

equation yields 

( ) ( )     

1 1ˆ ˆˆ+    + +
T T T c− −

′ ′
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or equivalently 
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124 C. Kotsakis 

 

Taking into account Eqs. (16) and (22) we finally have 

( )  

1
1

ˆ ˆ
ˆ   + +

ˆ ˆ

c

T T

c

−

−

⎡ ⎤⎡ ⎤
⎢ ⎥=⎢ ⎥
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X

x x
� H Σ H �E θ

z z

 (27) 

which concludes our proof. 

 

 

Conclusions 

The mapping problem of a network solution to a target frame through the HT ap-

proach was discussed in this paper. It has been shown that the optimal coordinates 

in the target frame (in the sense of minimum estimation error variance) can be 

computed by a closed-form expression in terms of appropriate corrections to the 

standard HT-based estimator that is commonly used in geodetic practice. Our re-

vised estimator is easy to implement and it does not require any additional matrix 

inversion other than the one already used by the classic stepwise solution of Eqs. 

(2) and (3). Also, it was proved that its difference with the weighted CNA estima-

tor depends, expectedly, on the chosen transformation model and, in particular, on 

the linear combination of the columns of the matrix  

T
�E ; see Eq. (12). This is a 

useful result as it implies the equivalency of the two general approaches for net-

work densification when the frame transformation model (θ , E ) employs only the 

parameters related to the rank defect of the underlying network. 
 
The advantage of the optimal HT approach presented here, compared to the stan-

dard HT approach, is the minimization of the propagated noise from the initial net-

work solution to the estimated coordinates in the target frame (both at the reference 

and non-reference stations). This is accomplished by a filtering step within the 

transformation procedure which exploits the network’s known covariance structure 

in both frames; see Eq. (8). It is again noted that any unmodeled non-secular sig-

nals in the initial coordinates will be affected by such filtering during their transfer 

to the target frame. Hence, the methodology described in this paper is not tuned for 

the analysis of Earth loading signals with respect to a secular reference frame, al-

though the aforementioned noise reduction is a critical and worth-considering as-

pect in support of geophysical signal detection in ITRF-aligned coordinate time 

series. 
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