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Abstract: Strain rate parameters are derived for any epoch under the model of 

point motion with constant velocities from the direct differentiation and limit pro-

cedures on the rigorous formulas for strain parameters (dilatation, maximum shear 

strain, principal strains) introduced by Biagi & Dermanis. It is shown that the clas-

sical approximate formulas for strain rate parameters at an initial epoch based upon 

the infinitesimal strain tensor instead of the real one are in fact rigorous and identi-

cal with those derived rigorously! Strain rate parameters at any epoch are expressed 

as functions of those at the initial epoch and time. 

 

 

1. Introduction 

 

Deformation analysis on the horizontal plane is concerned with the point-wise 

comparison of the shape around each point at two epochs an initial (reference) one 

0
t  and a later (current) one t . It is based on either the deformation gradient 

0

∂
=
∂

x
F

x
 or the displacement gradient 

0

∂
= = −
∂

u
J F I

x
, where 

0
x  and x  are the 

point coordinates at epochs 
0
t  and t , respectively, while 

0
= −u x x  is the point 

displacement. The computation of strain and strain rate parameters is traditionally 

carried out based on the infinitesimal strain matrix tensor 
inf

1
( )

2

T
= +E J J , which  

is a first order approximation to the strain tensor 
1 1
( ) ( )

2 2

T T T
= − = + +E F F I J J J J .  

Strain parameters are two-epoch quantities 
0

( , )p t t  while strain rate parameters can 

be either two-epoch quantities  
 

0 0
( , ) ( , )

d
p t t p t t

dt
=�  (1) 

 
or single epoch quantities  
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0

( ) lim ( , ) lim ( , )
t t

d d
p t p t t p t t

d dtτ

τ

τ
′→ →

′= + =
′

� . (2) 

 
Here we will be mostly concerned with initial epoch strain rates  
 

0

0 0 0
( ) lim ( , )

t t

d
p p t p t t

dt→

= =� �  (3) 

 
for the special case where all points in the region move with constant velocities v  

according to the linear in time model  
 

0 0
( ) ( )t t t= + −x x v . (4) 

 
which is the model currently implemented for the International Terrestrial Refer-

ence Frame (ITRF) see e.g. Altammimi et al. (2011).  

In this case 
0

d

dt

∂
≡ = ≡

∂

J v
J L

x

�  is the velocity gradient. 

Physically meaningful strain parameters are the dilatation Δ , the (maximum) shear 

strain γ  and the principal strains 
max
e  and 

min
e . In the infinitesimal approach they 

are computed from the elements of the displacement gradient J  according to the 

approximate formulas (Malvern, 1977, Jaeger et al., 2007, Dermanis 2009) 
 

11 22
J JΔ = + , (5) 

 

1 11 22
J Jγ = − , 

2 12 21
J Jγ = + , 2 2

1 2
γ γ γ= + , (6) 

 

max

2
e

γΔ +
= , 

min

2
e

γΔ −
= . (7) 

 
where 

1
γ , 

2
γ  are the so-called shear components. Due to linear character of some 

of the above relations, the corresponding initial epoch strain rate parameters are 

computed by replacing the elements of J  with the corresponding elements of 

=J L� : 
 

0 11 22
L LΔ = +� , 

10 11 22
L Lγ = −� , 

20 12 21
L Lγ = +� . (8) 

 

For the shear the two-epoch rate 1 1 2 2

0
( , )t t

γ γ γ γ
γ

γ

+
=

� �

�  has undefined limit for 

0
t t→  since in this case both 

1
0γ → , 

2
0γ →  and 0γ → . Instead the following 

relation is used 
 

2 2

0 10 20
γ γ γ= +� � � ,  (9) 
 
which at first sight appears to be unfounded. Furthermore 

0 0

max,0
2

e

γΔ +
=

�

�

� , 0 0

min,0
2

e

γΔ −
=

�

�

� . (10) 



152 Athanasios Dermanis 

 

We will show here that the above equations for strain rate parameters despite the 

fact that they are based on the approximate value 
inf

E  of the strain tensor E  they 

are rigorous formulas with no approximation involved! This will be achieved by 

applying the rigorous definition of initial epoch strain rate parameters on the rigor-

ous formulas for strain parameters introduced by Biagi & Dermanis (2006, 2012). 

These are based on the deformation gradient matrix 
0

∂
=
∂

x
F

x
 which in the case of 

the constant velocity model for point motion becomes 
 

0 0 0

0 0 0

[ ( ) ] ( )t t t t τ

∂ ∂ ∂
= = + − = + − ≡ +
∂ ∂ ∂

x v
F x v I I L

x x x
 (11) 

 
where 

0
/= ∂ ∂L v x  is the velocity gradient and we have also set 

0
t tτ = −  for the 

shake of simplicity. The rigorous algorithm is as follows 
 

2( )T T T
τ τ= = + + + =C F F I L L LL  

 

 
2 2 2 2

11 11 21 12 21 11 12 21 22

2 2 2 2

12 21 11 12 21 22 22 12 22

1 2 ( ) ( ) ( )

( ) ( ) 1 2 ( )

L L L L L L L L L

L L L L L L L L L

τ τ τ τ

τ τ τ τ

⎡ ⎤+ + + + + +
= ⎢ ⎥

+ + + + + +⎣ ⎦
, (12) 

 

11 22
A C C= + ,         2 2

11 22 12
( ) 4B C C C= − + , (13) 

 

2

1

2

A B
λ

+
= , 2

2

2

A B
λ

−

=  (14) 

 

1 2

1 2

λ λ
γ

λ λ

−

= , 
1 2

1λ λΔ = −  (15) 

 
2

1

max

1

2
e

λ −

= , 
2

2

min

1

2
e

λ −

= . (16) 

 
In this rigorous approach the principal strains 

max
e  and 

min
e  have been replaced by 

the equivalent principal linear elongation factors 
max 1

λ λ=  and 
min 2

λ λ= , occurring 

at two perpendicular principal directions. They are the maximum and minimum 

values of the linear elongation factor 
0

/ds dsλ =  for curves at any direction with 

initial length element 
0

ds  and final one ds . 

 

 

2.  Two-epoch strain rate parameters 
 

The evaluation of two-epoch strain rate parameters 
0 0

( , ) ( , )
d

p t t p t t
dt

=�  (Dermanis, 

2010) follows from direct differentiation 
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1

1
4

A B
λ

λ

+
=

� �

� , 
2

2
4

A B
λ

λ

−

=

� �

� , (17) 

 

1 2 2 1 1 2

1 2 1 2

( )( )

2

λ λ λ λ λ λ
γ

λ λ λ λ

+ −

=

� �

� , 
1 2 1 2
λ λ λ λΔ = +� �� , (18) 

 

max 1 1
e λ λ=

�

� , 
min 2 2
e λ λ=

�

� , (19) 
 

where dots denote derivatives with respect to time, 
dq

q
dt

=� . 

Since these rates they will be the basis for the derivation of single epoch strain 

rates they must be expressed as functions of the elements of the velocity gradient 

L . From (12) follows that 
 

2
T T

τ= + + =C L L LL�  
 

2 2

11 11 21 12 21 11 12 21 2211 12

2 2

12 21 11 12 21 22 22 12 2212 22

2 2 ( ) 2 ( )

2 ( ) 2 2 ( )

L L L L L L L L LC C

L L L L L L L L LC C

τ τ

τ τ

⎡ ⎤ ⎡ ⎤+ + + + +
=⎢ ⎥ ⎢ ⎥

+ + + + +⎣ ⎦⎣ ⎦

� �

� �

 (20) 

 
while 
 

11 22
A C C= +
� � �  (21) 
 
and 
 

11 22 11 22 12 12 11 22 12

2 2 2 2

11 22 12
12 11 22

11 22 12

( )( ) 4 2

( ) 4 2
1 1

2

C C C C C C C C C
B

C C C C C C

C C C

− − + −
= = +

− + ⎛ ⎞ ⎛ ⎞−
+ +⎜ ⎟ ⎜ ⎟

−⎝ ⎠ ⎝ ⎠

� � � � � �

� . (22) 

 

 

3. Derivation of initial epoch strain rate parameters 
 

In order to derive the limits of γ�  and Δ�  as 
0

t t→  (
0

0t tτ = − → ) we must first 

examine the same limits for C� , A� , B� , as well as for 
1
λ  and 

2
λ . Obviously for 

0
t t→  the corresponding limits are →F I , →C I  and 

1
1λ → , 

2
1λ → , since 2

1
λ , 

2

2
λ  are the eigenvalues of C . From (12) follows that 
 

2 2 2 2

11 22 11 22 11 21 12 22

12 12 21 11 12 21 22

2( ) ( )

2 2[( ) ( )]

C C L L L L L L

C L L L L L L

τ

τ

− − + + − −

=

+ + +

, (23) 

and 

0

11 22 11 22

12 12 21

lim
2t t

C C L L

C L L→

− −

=

+

, 
0

12 12 21

11 22 11 22

2
lim
t t

C L L

C C L L→

+

=

− −

. (24) 
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From (20) follows that 
 

0 0

11 12 2111 12

12 21 2212 22

2
lim lim

2t t t t

L L LC C

L L LC C→ →

+⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥+⎣ ⎦⎣ ⎦

C

� �

�

� �

 (25) 

  
As an immediate consequence 
 

0 0

11 22 11 22
lim lim( ) 2( )
t t t t

A C C L L
→ →

= + = +
� � � . (26) 

 

0 0

11 22 12

2 2

12 11 22

11 22 12

2
lim lim

2
1 1

2

t t t t

C C C
B

C C C

C C C

→ →

⎡ ⎤
⎢ ⎥
⎢ ⎥−

= + =⎢ ⎥
⎢ ⎥⎛ ⎞ ⎛ ⎞−

+ +⎢ ⎥⎜ ⎟ ⎜ ⎟
−⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

� � �

�  

 

 

11 22 12 21

2 2

12 21 11 22

11 22 12 21

2( ) 2( )

1 1

L L L L

L L L L

L L L L

− +
= +

⎛ ⎞ ⎛ ⎞+ −
+ +⎜ ⎟ ⎜ ⎟

− +⎝ ⎠ ⎝ ⎠

 

 

 2 2

11 22 12 21
2 ( ) ( )L L L L= − + + . (27) 

 
From the above limits follows that 
 

0 0

0 0

2 2

11 22 11 22 12 21

1

1

lim lim 2( ) 2 ( ) ( )
lim lim

4 4 4

t t t t

t t t t

A B
L L L L L LA B

λ
λ

→ →

→ →

+
+ + − + ++

= = =

� �

� �

� , (28) 

 

0 0

0 0

2 2

11 22 11 22 12 21

2

2

lim lim 2( ) 2 ( ) ( )
lim lim

4 4 4

t t t t

t t t t

A B
L L L L L LA B

λ
λ

→ →

→ →

−
+ − − + +−

= = =

� �

� �

� . (29) 

 
Therefore  
 

0 0 0 0

2 21 2 2 1 1 2

1 2 11 22 12 21

1 2 1 2

( )( )
lim lim (lim lim ) ( ) ( )

2t t t t t t t t

L L L L
λ λ λ λ λ λ

γ λ λ
λ λ λ λ→ → → →

+ −
= = − = − + +

� �

� �

�  (30) 

 
while  
 

0 0 0 0

1 2 1 2 1 2 11 22
lim lim( ) lim lim
t t t t t t t t

L Lλ λ λ λ λ λ
→ → → →

Δ = + = + = +� � � �� . (31) 

 

Therefore the initial epoch rates 
0

0
lim
t t

γ γ
→

=� �  and 
0

0
lim
t t→

Δ = Δ� �  are given by 

 
2 2

0 11 22 12 21
( ) ( )L L L Lγ = − + +� , 

0 11 22
L LΔ = +�  (32) 
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which are identical with the formulas of the approximate infinitesimal approach! 

Indeed recalling that 
10 11 22

L Lγ = −�  and 
20 12 21

L Lγ = +�  we obtain  
 

2 2

0 10 20
γ γ γ= +� � � , (33) 
 
which is no other than the originally enigmatic relation (9)! 

For the rates of the principal strains we have 
 

0 0 0

2 2

11 22 11 22 12 21 0 0

max 1 1 1

( ) ( ) ( )
lim lim( ) lim

2 2t t t t t t

L L L L L L
e

γ
λ λ λ

→ → →

+ + − + + Δ +
= = = =

�

�

� �

� ,  (34) 

 

0 0 0

2 2

11 22 11 22 12 21 0 0

min 2 2 2

( ) ( ) ( )
lim lim( ) lim

2 2t t t t t t

L L L L L L
e

γ
λ λ λ

→ → →

+ − − + + Δ −
= = = =

�

�

� �

� . (35) 

 
Therefore the initial epoch rates 

0

max,0 max
lim
t t

e e

→

=� �  and 
0

min,0 min
lim
t t

e e

→

=� �  are given by 

 

0 0

max,0
2

e

γΔ +
=

�

�

�  ,  0 0

min,0
2

e

γΔ −
=

�

�

� , (36) 

 
which are identical with the supposedly approximate formulas of the infinitesimal 

approach! 

We must remark that although point coordinates are linear functions of time the 

same is not true for the strain parameters and the strain rates cannot be used to in-

duce strain parameters at any other epoch since 
0 0 0 0 0

( , ) ( , ) ( )p t t p t t t t p≠ + − � . 

 

 

4. Strain rate parameters at any epoch 
 

Although the derived strain rate parameters refer to the initial epoch 
0
t , the choice 

of 
0
t  itself is arbitrary and therefore the results are easily modified to apply to any 

epoch. For the derivation of single epoch strain rates ( ) lim ( , )
t t

d
p t p t t

dt′→

′=

′

�  we note 

that the coordinate motion model 
0 0

( ) ( )t t t= + −x x v  gives  
 

0 0
( ) ( ) ( ) ( )t t t t t t′ ′ ′= + − = + −x x v x v  (37) 

 
The deformation gradient for the two epochs t′  and t  is given by 
 

[ ]
( )

( , ) ( ) ( ) ( ) ( )
( ) ( ) ( )

t

t
t t t t t t t t t

t t t

′∂ ∂ ∂
′ ′ ′ ′= = + − = + − ≡ + −

∂ ∂ ∂

x v
F x v I I L

x x x
. (38) 

 
We note that while 

0 0
( , ) ( )t t t t= + −F I L  now ( , ) ( )

t
t t t t′ ′= + −F I L , i.e. the initial 

epoch velocity gradient 
0

∂
=
∂

v
L

x
 has been replaced by the instantaneous velocity 
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gradient 
( )

t

t

∂
=
∂

v
L

x
. The structure of all strain rate parameters remains the same 

with respect to the relevant deformation gradient F . Therefore since 
0

( , )t tF  has 

been replaced by ( , )t t′F  we simply need to replace L  with 
t

L  in the relevant 

formulas. In order to evaluate 
t

L  in terms of L  we note that  
 

1

10

0 0 0 0 0

( )
( )

( ) ( )
t

t

t t

τ τ

−

−

⎡ ⎤ ⎡ ⎤∂∂ ∂ ∂ ∂ ∂ ∂
= = = = + = +⎢ ⎥ ⎢ ⎥
∂ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦

xv v v x v v
L I L I L

x x x x x x x
 (39) 

 

with 
0

t tτ = − . Analytical inversion gives 
 

1

11 12 22 121

21 22 21 11

1 11
( )

1 1

L L L L

L L L LD

τ τ τ τ

τ

τ τ τ τ

−

−

+ + −⎡ ⎤ ⎡ ⎤
+ = =⎢ ⎥ ⎢ ⎥+ − +⎣ ⎦ ⎣ ⎦

I L  (40) 

 
where 
 

2 2

11 22 12 21 11 22 11 22 12 21
det( ) (1 )(1 ) 1 ( ) ( )D L L L L L L L L L Lτ τ τ τ τ τ= + = + + − = + + + − =I L  

 

2
1 trace detτ τ= + +L L  (41) 

 
The required velocity gradient becomes 
 

,11 ,12 11 12 22 121

,21 ,22 21 22 21 11

11
( )

1

t t

t

t t

L L L L L L

L L L L L LD

τ τ

τ

τ τ

−

+ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = + = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− +⎣ ⎦ ⎣ ⎦⎣ ⎦

L L I L  

 

 
11 11 22 12 21 12

21 22 11 22 12 21

( )1

( )

L L L L L L

L L L L L LD

τ

τ

+ −⎡ ⎤
= ⎢ ⎥+ −⎣ ⎦

 (42) 

 
The instantaneous strain rate parameters for an arbitrary epoch t  follow by replac-

ing in the formulas for the initial epoch rates the elements 
ij
L  of L  with the corre-

sponding elements 
,t ij

L  of 
t

L . Thus 

 

2 2 0

,11 ,22 ,12 ,21
( ) ( ) ( )

( )
t t t t

t L L L L
D t

γ
γ = − + + =

�

� , (43) 

 

0 0

,11 ,22

2( )det
( )

( )
t t

t t
t L L

D t

Δ + −
Δ = + =

L�

� , (44) 

 
while 
 

max,0 0

max

( )det( ) ( )
( )

2 ( )

e t tt t
e t

D t

γ + −Δ +
= =

L�

�

�  ,  (45) 
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min,0 0

min

( )det( ) ( )
( )

2 ( )

e t tt t
e t

D t

γ + −Δ −
= =

L�

�

� . (46) 

 

where since in view of (32) 
11 22 0

trace L L= + = ΔL �  
 

2

0 0 0
( ) 1 ( ) ( ) detD t t t t t= + − Δ + − L� . (47) 

 

 

5. Summary and conclusions 
 

We have derived here three different types of rigorous strain rate parameters, 

which are the rates of corresponding strain parameters (dilatation, shear strain, 

principal strains). Since point-wise strain parameters describing deformation are 

functions of two epochs an initial one (reference shape) and a later one (current 

shape) it is possible to distinguish between:  

(a) Two-epoch strain rates (rates with respect to the current shape) 

(b) Single-epoch (instantaneous) strain rates at the initial (reference) epoch. 

(c) Single-epoch (instantaneous) strain rates at any (current) epoch. 

The most amazing result is the fact that the rigorous initial epoch strain rates (b 

above) are identical with the classical supposedly approximate strain rates which 

are derived on the basis of the infinitesimal approximation to the strain tensor. 

Moreover the problem of the enigmatic character of the formula for shear strain 

rate which does not comply with the rules of differentiation has been resolved. 

Another interesting result is that strain rates at any current epoch (c above) are ra-

tional time functions involving the initial epoch rates. 
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