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Abstract 
We present here a generalized theory of higher order vector finite elements. This the-
ory aims at generating tetrahedral Whitney elements with tangential continuity and 
deals with some fundamental theoretical issues. The proper definition of degrees of 
freedom and correct modeling of irrotational fields are specifically dealt with, based 
on principles from topology and differential geometry. The whole set of properties is 
enforced to the shape functions, in order to produce their explicit expressions. Second 
and third order vector finite elements are produced and implemented in three-
dimensional electromagnetic prapagation, radiation and scattering problems, thus pro-
viding a promising tool for electromagnetic analysis.  
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Περίληψη 
Στο άρθρο παρουσιάζεται μια γενική θεωρία των διανυσματικών πεπερασμένων στοι-
χείων ανώτερης τάξης ή στοιχείων Whitney. Στα πλαίσια της ανάλυσης δίνεται το 
σκεπτικό για την κατασκευή ανώτερης τάξης τετραεδρικών στοιχείων με συνέχεια 
της εφαπτομενικής συνιστώσας του αγνώστου πεδίου. Εξετάζονται θεμελιώδη θεω-
ρητικά ζητήματα όπως ο ορισμός των βαθμών ελευθερίας καθώς και η ορθή γεωμε-
τρική και τοπολογική προσέγγιση των αστρόβιλων πεδίων. Με τη βοήθεια εννοιών 
από την τοπολογία και τη διαφορική γεωμετρία δίνονται τελικές εκφράσεις των συ-
ναρτήσεων βάσης και γίνεται εφαρμογή σε πρακτικά προβλήματα ηλεκτρομαγνητι-
κής διάδοσης, ακτινοβολίας και σκέδασης. 

Α.Π.Θ. ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ - ΤΜΗΜΑ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ

ΥΔΡΟΓΑΙΑ. Τιμητικός Τόμος στον Καθηγητή Χρήστο Τζιμόπουλο
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1. Introduction  
 
The introduction and extensive application of vector finite elements is considered one 
of the most important recent advances in electromagnetic field computation. A large 
number of publications, either theoretical or applied, on this subject, seems to result in 
some common observations about their advantages over scalar elements. For exam-
ple, the property of tangential continuity across interface boundaries provides a cor-
rect representation of electromagnetic fields especially when sharp corners or material 
discontinuities are involved. On the other hand, the property of proper modeling of 
the nullspace of the curl operator, in other words the consistent modeling of irrota-
tional fields, ensures the elimination of spurious modes, which do not only contami-
nate the solutions of eigenvalue problems, but are responsible for corruptions (or 
"vector parasites") in the analysis of deterministic problems as well, when conven-
tional, scalar elements are used. Furthemore, on the level of implementation, the sim-
plicity and clear geometric representation of degrees of freedom, makes it easy to 
enforce boundary conditions and the property of tangential continuity.  
 However, the correct topological and geometrical representation of electromag-
netic fields via vector finite elements is achieved with the cost of low rates of conver-
gence. Nevertheless, since this drawback can be attributed to the existence of zero 
eigenvalues in modal electromagnetic field problems, it seems to be an inherent prop-
erty of Maxwell's equations, rather than a disadvantage of the vector finite element 
itself.  
 Since the introduction of edge elements (Nédélec, 1980), (Bossavit, 1988), which, 
from a mathematical point of view, are considered first order Whitney 1-forms, much 
work has been done to implement them in several electromagnetic field and potential 
formulations. But despite their extensive application and use, their generalisation 
from the first order to higher orders has always been an open problem, since there 
seems to be a lack of a common ground and a straightforward methodology to pro-
duce higher order Whitney forms. However, several approaches to the construction of 
higher order vector finite elements, either terahedral (Cendes, 1991), (Lee et al., 1991, 
(Webb and Forghani, 1993), or hexahedral (Crowley, 1988), (Kameari, 1990), (Wang 
and Ida, 1992), can be found in the literature. Each approach seems to emphasise on 
different aspects of the Whitney element theory and results in different expressions of 
vector finite elements. Sometimes, the proposed methodology is not clearly explained 
and the real nature of vector finite elements is not evident through its development.  
 This paper presents a generalised and unified theory of Whitney elements, which 
results in a systematic methodology for the construction of both tetrahedral and hexa-
hedral vector finite elements. Through the proposed theory, a step-by-step enforce-
ment of the fundamental properties of Whitney elements is adopted, thus providing an 
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insight into their philosophy and nature. For instance, the choice of conforming de-
grees of freedom that have a clear geometrical interpretation is very critical, as far as 
implementation parameters are concerned. Furthermore, the property of decoupling 
between the degrees of freedom or the associated basis functions contributes to the 
element's simplicity. Finally, the inherent geometry of electromagnetic fields, as de-
scribed by certain concepts from Differential Geometry and Geometric Integration 
Theory is preserved in the discrete domain by taking special care to represent the gra-
dients of scalar vector fields, correctly and consistently.  
 On the other hand, this paper aims at providing useful, ready-to-use expressions 
for the resulting higher order Whitney elements and some important guidelines about 
difficulties in their implementation. Therefore, apart from the underlying theoretical 
background, it gives to the researcher, as well as to the end-user a useful tool for ac-
curate electromagnetic field computation. 
 
 

2. How many degrees of freedom? 
 
The first problem in the generation of Whitney Elements in higher orders is the proper 
choice of degrees of freedom. The well founded choice of edge-based degrees of 
freedom, in the case of edge elements (Bossavit, 1988), seems to be insufficient when 
higher order approximations are invlolved. We will show that in orders higher than 
one, degrees of freedom defined on the faces or the whole volume of the element are 
required. 
 Let's first determine the actual number of degrees of freedom that is required to 
build an n-th order tetrahedral tangential vector finite element (1-form Whitney ele-
ment). An important observation is that tangential continuity is automatically ob-
tained, if the field in an n-th order tetrahedral element is expressed by the expansion  

  
1 2 k 1 2 k

1 2 k

4 n 4 4 4
i
i i i i i i i

i 1 k 1 i 1 i 1 i 1

F f ζ ζ ζ )  ζ
= = = = =

È ˘Ê ˆ
Í ˙= —Á ˜Í ˙Á ˜Ë ¯Í ˙Î ˚

Â Â ÂÂ Â �… …     (1) 

where ζi, i = 1, ..., 4 are the simplex coordinates and  
  ∇ζi  are vectors normal to face {i}, provided that the values of degrees of free-

dom are the same for adjacent elements.  

 However, this primitive form for the vector finite element includes every possible 
term that involves products of the simplex coordinates, up to the n-th order. Hence, 
the number of degrees of freedom in (1) is excessively large. To determine the precise 
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number of linearly independent degrees of freedom, which is required, we should 
focus on the property of correct modeling of the nullspace and the range space of the 
curl operator, which is considered fundamental in the study of Whitney elements 
(Cendes, 1991).  
 In order to model the range space of the curl operator in a correct way, the curl of 
an n-th order approximation should be a complete vector polynomial of order n-1. 
The number of parameters to built a complete 3D vector polynomial of order n-1 is 
given by 

 c
n(n 1)(n 2)N

2
+ +=  ,    (2) 

 However, since the divergence of the curl of a vector is identically zero, there is a 
number of linear relations among these parameters, that should be subtracted from 
(1). This is proven to be  

 d
(n 1)n(n 1)N

6
- +=  ,   (3) 

and the actual number of independent coefficients for completeness is Nc-Nd.  

 Finally, we should add the required number of degrees of freedom to model the 
nullspace of the curl operator, in other words the irrotational fields. This is the num-
ber of independent gradients, Ni, of an n-th order scalar field, which is, in fact, the 
number of edges of a "gradient tree" (Fig. 1). If the gradients of an irrotational field  

 

  
Fig. 1.  A gradient tree for a third order element, indicated by the thick lines. 
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on the edges of this tree are known, gradients on any other edge can be easily com-
puted. The number of independent edges in a gradient tree is easily proven to be  

 
3 2

i
n 6n 11nN

6
+ += ,   (4) 

and the required number of independent degrees of freedom for an n-th order 1-form 
Whitey element is given by 

  c d i
n(n 2)(n 3)N N N N

2
+ += - + = .   (5) 

 
3. What kind of degrees of freedom?  

 
One of the most obscure aspects of the Whitney element generation methodology is 
that of the choice of degrees of freedom. What seems apparent in the first order case, 
i.e. the well known edge element, where the degrees of freedom are the line integrals 
of the vector field along the tetrahedron's edges, is not enough when dealing with 
higher orders. On the other hand, it is likely that the tangentially continuous field 
should be expressed in terms of some kind of tangential projections. The following 
observations shed light on that issue. 
 First of all, for an n-th order 1-form Whitney element, n degrees of freedom could 
be related to each edge. This number accounts for n-th order field variations along the 
tetrahedron's edges or, in other words, it can represent the n gradients of an n-th order 
scalar field. Using less than n degrees of freedom on each edge, we could not express 
n-th order fields along edges, whereas more than n degrees of freedom are not linearly 
independent. These degrees of freedom can be expressed in terms of field projections 
on edges. Although we could use point degrees of freedom, in other words tangential 
projections on specific points of an edge, we will adopt weighted field projections of 
the form 

 
( j)

p n 1
ij pij

(i)

ˆF a dl-= ◊Ú F t ,  (6) 

where the nodal basis functions of order n-1 for every node p, on edge [i, j], play the 
role of the weighting functions. We will show that this choice leads to an elegant 
definition of the other types of degrees of freedom and a rigorous connection of the 1-
form Whitney element to 2-form Whitney elements, i.e. normal vector finite ele-
ments. It can be also shown, that any other field projection on edge [i, j] can be ex-
pressed as a linear combination of the degrees of freedom in (6). This affine transfor-

611



612 Μέρος ΙΙ: Η Γη
 

mation between two arbitrary sets of edge degrees of freedom justifies the fact that all 
possible choices are, more or less, equivalent, although different choices will result in 
slightly different basis function expressions.  
 We now focus on the crucial issue of choosing the remaining degrees of freedom, 
independent to those given by (6) and to each other, so that the desired number, given 
by (5), will be completed. A convenient approach is to attempt to express the degrees 
of freedom for the curl of the vector field under consideration, in terms of the degrees 
of freedom of the vector field itself. This is particularly useful when dealing with 
Maxwell's equations, because it will provide explicit discrete relations between E and 
B, or H and D. However, we bear in mind that the curl of an 1-form (tangentially 
continuous) field is a 2-form (normally continuous) field, and we should at least 
comment on how the degrees of freedom for such a kind of field are to be defined.  
 In a way similar to that of the previous paragraph, an n-th order normally continu-
ous vector field would require n(n + 1)/2 degrees of freedom for each face, related to 
normal projections, to describe n-th order field variations on that face. This is also the 
number of independent curls of an n-th order tangentially continuous field. A reason-
able choice for the facial degrees of freedom of an n-th order normally continuous 
field, similar to (6), is  

 p n 1
pijk

{i, j,k}

ˆF a ds-= ◊ÚÚ F n ,  (7) 

where the weighting functions are the nodal basis functions of order n-1 for every 
node p, on the face {i, j, k}. Apparently, these degrees of freedom are integrated 
weighted normal field projections (flows) from the face {i, j, k}. 
 In the second order case, the edge degrees of freedom for the field F (6) take the 
form. 

 
( j) (i)

ji
ij ij i ji jji

(i) ( j)

ˆ ˆF ζ dl, F ζ dl= ◊ = ◊Ú ÚF t F t ,  (8) 

 To associate degrees of freedom of F to those of the curl of F, we consider the 
equation 

 2 2 2(ζ ) ζ ζ—¥ = — ¥ + — ¥F F F ,  (9) 

and we apply the Stokes theorem on face {1,2,3}: 

 
(2) (3) (1)

2 2 2 2
{1,2,3} (1) (2) (3)

ˆ(ζ ) ds ζ dl ζ dl ζ dl+— ¥ ◊ = ◊ + ◊ + ◊ÚÚ Ú Ú ÚF n F F F . (10) 
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By combining (9) and(10), we obtain the expression 

 
(1) (3)

2 2 2 2
{1,2,3} (2) (2) {1,2,3}

ˆ ˆζ ds ζ dl ζ dl n ζ ds+ +— ¥ ◊ = - ◊ + ◊ - ¥ ◊—ÚÚ Ú Ú ÚÚF n F F F . (11) 

 In the left side of (11) we have a degree of freedom for the curl of F, falling into 
the general category (7). As it can be seen, computation of degrees of freedom for the 
curl of a 2-form vector field involves the edge degrees of freedom of 1-form fields (2) 
and a new kind of degrees of freedom defined on faces, but related to tangential pro-
jections on them. Therefore, it seems reasonable to make the following choice for the 
facial degrees of freedom of an 1-form field on the face {i, j, k}: 

 ijk j ikj k
{i, j,k} {i, j,k}

ˆ ˆF ζ ds, F ζ ds+ -= ¥ ◊— = ¥ ◊—ÚÚ ÚÚF n F n . (12) 

 However, only two out of the three possible degrees of freedom are linearly inde-
pendent since 

  i j k ˆ( ζ ζ ζ ) 0— +— + — ¥ =n   (13) 

 Therefore, we have to define eight facial degrees of freedom, two on each face, 
which gives rise to an inevitable unsymmetry. This means that the local numbering of 
the element will affect the placement of degrees of freedom. We should also empha-
sise, that degrees of freedom on both edges and faces are shared between adjacent 
elements, therefore we have to place them correctly and consistently during the mesh 
generation procedure. In addition, the unit vectors normal to the surface in the degrees 
of freedom (12) are assumed to point outwards and inwards, respectively. This also 
helps to a consistent definition, in the sense that the signs of facial degrees of freedom 
are the same for adjacent elements. The twenty degrees of freedom for the second 
order element are shown in Fig. 2a.  
 In the third order case, our choice of degrees of freedom is justified by a similar 
procedure. First of all, three degrees of freedom are defined on edge [i, j]. According 
to (6), we define 

 
( j) ( j) ( j)

ij jjii
ij ij i i ij i j ij j jij ij

(i) (i) (i)

ˆ ˆ ˆF ζ (2ζ 1)dl, F ζ ζ dl, F ζ (2ζ 1)dl= ◊ - = ◊ = ◊ -Ú Ú ÚF t F t F t  (14) 

 Using the Stokes theorem and an approach similar to (9)-(11), we introduce the 
following facial degrees of freedom on any face {i, j, k}: 
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 q
pqr q p

{i, j,k}

ˆF ζ ζ ds= ◊ ◊ —ÚÚ F n ,  (15) 

where (p, q, r)∈{(i, j, k), (i, k, j), (j, k, i), (j, i, k), (k, i, j), (k, j, i)}, in other words any 
possible combination of indices i, j and k. As a result, we have six independent de-
grees of freedom for each face. Unlike the second order case, the definition of facial 
degrees of freedom is here symmetric. However, the total number of degrees of free-
dom, which is 45, is not yet completed. To determine the remaining three of them we 
should first define a second kind of degrees of freedom for a 2-form (normal) Whit-
ney element. Using Gauss theorem and the same approach as before, we obtain a new 
kind of degrees of freedom involving volume integrals. For the third order case the 
three volume degrees of freedom can be defined via  

 ijkl j k
(i, j,k,l)

F ζ ζ dv= ◊— ¥ —ÚÚÚ F   (16) 

where only three out of the possible combinations of indices (i, j, k, l) should be cho-
sen. We assume that (i, j, k, l) ∈{(1, 2, 3, 4), (2, 3, 1, 4), (3, 1, 2, 4)}. In this case, 
although we can symmetrically define the facial degrees of freedom, the lack of sym-
metry is observed in the placement of volume degrees of freedom. Again, since de-
grees of freedom are shared between neighbouring elements, we should define proper 
local numberings to place them consistently. The 45 degrees of freedom that have 
been defined for the third order element are shown in Fig. 2b. 
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Fig. 2. (a) Degrees of freedom in a second-order tetrahedron. (b) Degrees of freedom in a third-order tetrahe-
dron. Face degrees of freedom are shown only on front face 
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4. Properties and construction of basis functions 
 
In the previous paragraph we have introduced the degrees of freedom that will be 
used to the construction of our higher order Whitney elements. We have clearly stated 
that this particular choice is not mandatory. Other forms of tangential projections on 
edges, faces or the whole element's volume could be introduced, either integral- or 
point-based, but similar to the kernel of (8), (12) and (14)-(16). We emphasise that the 
types of tangential projections in each kind of degrees of freedom are slightly differ-
ent and, as it can be shown, this ensures the independence of degrees of freedom, in 
other words the element's unisolvence. However, the choice of degrees of freedom is 
expected to affect the final form of the basis functions.  
 Let us now proceed to a more formal definition of the properties that the tangential 
vector finite element basis functions should satisfy. We have seen that even the gen-
eral form of expansion (1) wich has no particular properties (1), ensures the tangential 
continuity, on condition that degrees of freedom are consistently defined between two 
neighbouring elements. Therefore, it seems that the two basic properties of Whitney 
elements, conformity and unisolvence (Nédélec, 1980), are almost automatically sat-
isfied. In fact, the introduction of two other properties will enable the exact determi-
nation of basis functions. As we will see, the importance of those properties is, some-
times, underestimated because they lack a formal definition, although they may seem 
to be quite obvious 
 First of all, we introduce a general expression of the basis functions in terms of 
some unknown coefficients, which have to be computed. Any basis function of the n-
th order 1-form Whitney element is expressed via a vector polynomial expansion. 
This expansion includes any possible product, of order less than or equal to n, of the 
simplex coordinates that are associated with the 1-, 2- or 3-subsimplex (edge, face or 
volume, respectively), on which the corresponding degree of freedom is defined. The 
basis vectors of the expansion are the gradients of the simplex coordinates, also asso-
ciated to the same subsimplex. For instance, a basis function related to an edge degree 
of freedom, defined on edge [i,j] will be expressed in terms of ζi and ζj only, whereas 
the basis function of a facial degree of freedom on face {i,j,k} will involve ζi, ζj and 
ζk. This assumption is by no means restrictive, since the omitted terms are zero on the 
subsimplex under consideration. A compact algebraic expression for a basis function 
of any kind and order is  

 ( )  

  

1 2 l m 1 k
m1 2 k 1 1 k k 1 k

k
j j ... j i n n

i 1 ki i ...i i (n )... i (n ) i i
m 1

a ζ ... ζ ζ ,  n ... n n
=

= — + + £Â Âw , (17) 

where k is the order of the subsimplex, where the corresponding degree of freedom is 
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defined, i.e. 2, 3 or 4 for edge, face and volume degrees of freedom, respectively. 
Furthermore, i1, i2, ..., ik are the indices of the related simplex coordinates and the 
inner summation involves any possible multiplicities  n1, n2, ..., nk. 
 The first property, which has to be imposed on the basis functions is the decoup-
ling of degrees of freedom. This property simply guarantees a “separation” of degrees 
of freedom, in the sense that any basis function will affect only the degree of freedom 
that is associated with. In terms of a mathematical formulation, every degree of free-
dom that is computed for a given basis function should be zero, unless it is the one 
which is directly associated with it. In a more formal interpretation, if we consider the 
degrees of freedom functionals acting on vector fields, the decoupling property is 
expressed by 

 1 l 1 l
1 1 k k 1 1 k k1 k 1 k

j ... j n ...n
i ,m i ,m j ,n j ,ni ...i m ...m( ) δ ... δ δ ... δ=¡ w , (18) 

where the arguments of the functionals are the basis functions. We should note that 
(18) includes a normalisation condition. This property is particularly critical when the 
degrees of freedom of a given field have to be computed. Any 1-form field, F, will be 
approximated by a linear combination of the basis functions, 

 1 l 1 l
1 k 1 k

n ...n n ...n
m ...m m ...mF=ÂF w   (19) 

 If we apply the functional of (18) on (19) and impose property (18) we have 

 1 l 1 l
1 k 1 k

j ... j j ... j
i ...i i ...iF ( )=¡ F   (20) 

which implies that the coefficients in the expansion (19) are, in fact, the degrees of 
freedom of the vector field. If the decoupling property would not have been imposed, 
a system of equations would result instead of (20) and the computation of degrees of 
freedom would not be direct and easy.  
 Imposition of property (18) on the unknown basis functions (17) results in a set of 
linear equations in terms of the unknown coefficients of (17). However, this system of 
equations is underdetermined, which shows that a simple property of decoupling is 
not enough to produce the exact form of the basis functions. In fact, this property 
seems to be rather logistic, since it simply prevents basis functions from affecting 
degrees of freedom irrelevant to them. 
 To discover what kind of additional constraints should be imposed on the coeffi-
cients of (17) we should look back to a property that seems to have been exploited in 
a previous step of our analysis, the correct modeling of the nullspace of the curl op-
erator. In fact, the true essence of the Whitney element theory is included in this 
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property, since the real source of problems like spurious modes and parasitic vector 
solutions in deterministic problems, when conventional scalar finite elements are 
used, is, undoubtedly, the poor modeling of irrotational fields, or gradients of scalar 
fields. The property of correct nullspace modeling has been used in the derivation of 
the required number of degrees of freedom (5). However, we have attempted to intro-
duce a very wide class of field variations for the Whitney element expressions (17), 
and the element may not be able to correctly represent gradients of scalar fields, 
unless specific constraints are applied.  
 To find out how this property will practically affect the element construction, we 
revert to its elegant and formal definition taken from the field of Differential Geome-
try. Even from the early days of introduction and application of edge elements, the 
importance of existence of De Rham - Whitney complex, 

 grad curl div0 1 2 3W (D) W (D) W (D) W (D)æææÆ æææÆ ææÆ , (21) 

in the discrete domain, has been clearly emphasised (Bossavit, 1988). This abstract 
sequence of Hilbert spaces of scalar or vector fields shows how these spaces are trans-
formed by the vector operators. The four spaces are spaces of the discretised Whitney 
0-, 1-, 2- or 3-forms, defined on the discrete tesselation. The meaning of this sequence 
is that the image of any field belonging to a space to the left of an arrow, when the 
corresponding operator acts on it, should belong to the space to the right of the arrow. 
Generally, a De Rham complex is considered the basis for the existence and study of 
the topological and geometrical properties of spaces. In our case, a corresponding 
complex exists in the continuous domain, but not in the discrete domain, when nodal 
finite elements are used. 
 As far as the construction of Whitney 1-forms is concerned, we concentrate on the 
first from the three mappings in (21). To interpret this abstract property in terms of 
algebraic equations, we should require that the gradient of any Whitney 0-form, or 
scalar field defined on a n-th order tetrahedron, will belong to the space of Whitney 1-
forms. In other words, we seek the constraints that have to be imposed to the un-
known coefficients of (17), to guarantee the existence of solutions to the equations 

 1 l 1 l 1 l
1 k 1 k 1 k

j ... j j ... j n ...n n
pi ...i i ...i m ...mA (a ) φ= —Â w ,  (22) 

where A's are the unknown degrees of freedom, and φ's are the n-th order nodal ele-
ment basis functions. However, we are not interested in solving the system of equa-
tions (22) for the degrees of freedom. This system is a parametric one, since the basis 
functions are still parameter-dependent, and we search for the constraints among the 
coefficients, under which the system admits solutions. After some strenuous algebraic 
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manipulation, we can deduce the generic constraints that ensure the existence of solu-
tions for (22). In the second order case the generic constraints are 

 j ji i
ji ijii ija a a a 0+ = + = ,  (23), (24) 

 jk i
ij jk kia a a 0+ + = ,  (25) 

for any i, j, k, whereas for the third order case, these are proven to be 

 j ji i
jii ijjiii iija a a a 0+ = + = ,  (26), (27)  

 jk i
iij ijk kiia a a 0+ + = ,  (28) 

 ijkl jkli klij lijka a a a 0+ + + = .  (29) 

for any i, j, k, l. The coefficients that are involved in (23)-(25) and (26)-(29) are re-
lated to the terms of higher order in the vector finite element expressions, i.e. n-th 
order terms for the n-th order element. Hence, it should be emphasised that the terms 
of higher order cannot vary in an arbitrary way. The property of correct gradient rep-
resentation requires that their coefficients are related to each other by this kind of 
cyclic relations. These relations are easily generalised to higher orders. 
 The decoupling property (18), along with the solvability constraints that have been 
deduced in the previous paragraph, are combined to form linear systems of equations 
for the unknown coefficients of the basis functions (17). In the end of this awesome 
procedure, it may be surprising that the linear systems for the coefficients are neither 
under- nor overdetermined. The final expressions for the basis functions of a second 
order 1-form Whitney element are given by 

 i 2
ij i i j i j j i(8ζ 4ζ ) ζ ( 8ζ ζ 2ζ ) ζ= - — + - + —w , (30) 

 ijk i j k j k i k i j16ζ ζ ζ 8ζ ζ ζ 8ζ ζ ζ= — - — - —w , (31) 

for edge and face degrees of freedom, respectively, whereas in the third order case 
they are given by the following rather complicated expressions, 

 ii 3 2 2
ij i i i j i j i j j i(45ζ 45ζ 9ζ ) ζ ( 45ζ ζ 30ζ ζ 3ζ ) ζ= - + — + - + - —w , (32) 

 
ij 3 2 2 2

i i j i j i i j i jij
3 2 2
j j i j i j j i j i

(45ζ 180ζ ζ 45ζ ζ 75ζ 90ζ ζ 24ζ ) ζ

( 45ζ 180ζ ζ 45ζ ζ 75ζ 90ζ ζ 24ζ ) ζ

= + + - - + —

+ - - - + + - —

w
, (33) 
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j 2

i j i j kijk
2
j k j k i i j k i k j

( 270ζ ζ 90ζ ζ ) ζ

(90ζ ζ 30ζ ζ ) ζ (180ζ ζ ζ 30ζ ζ ) ζ

= - + —

+ - — + - —

w
, (34) 

 ijkl j k l i l k i j l i j k j i k l540ζ ζ ζ ρ 180ζ ζ ζ ζ 180ζ ζ ζ ζ 180ζ ζ ζ ζ= — - — - — - —w . (35) 

for edge, facial and volume degrees of freedom. The edge basis function, correspond-
ing to the third degree of freedom in (14) is also given by (32), but its signs should be 
inverted. 
 At last, we should further comment on the term “generic” that has been introduced 
in the previous paragraph. Constraints (23)-(25) and (26)-(29) are generic, in the 
sense that they produce the widest possible class of elements. A detailed analysis of 
(22) will show that there are nongeneric constraints as well. For example, in the sec-
ond order case we can replace (25) by the equations 

 ji
jk kia a 0= = .  (36), (37) 

 Replacement of one constraint by two is definitely more restrictive and leads to an 
overdetermined system of equations for the unknown coefficients of the basis func-
tions. However, we mention the existense of the nongeneric constraints (36),(37) be-
cause a previous approach (Lee et al. 1991) produces a second order tangential vector 
finite element that falls into this nongeneric category. Although, in the same ap-
proach, basis functions seem to be a priori or heuristically chosen, the fulfillment of 
constraints (36),(37) is a result of the fact that special care is taken for a correct null-
space modelling, via a different approach, the tree-cotree decompositions (Lee et al. 
1991), (Manges and Cendes, 1996). 
 
 

5. What happens with hexahedral vector finite elements?  
 
 Although the construction of hexahedral vector finite elements is considered sim-
pler, compared to the tetrahedral element case, due to the hexahedron’s structural 
simplicity, and various approaches can be found in the literature (Crowley, 1988), 
(Kameari, 1990), (Wang and Ida, 1992), we will show that a similar procedure can be 
used to derive hexahedral Whitney elements. This generalised theory seems to result 
in wider classes of elements, while it further clarifies some common but, more or less, 
ad hoc assumptions. We will concentrate on generating second order elements, al-
though any extention is straightforward and easy. 
 First of all, we have to decide the particular type of the nodal hexahedral element 
on which a Whitney form is to be built. We could choose between Lagrangian or Ser-
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endipity elements, although there are other possible node placements, depending on 
the desired accuracy and number of nodes. This choice will affect the dimension of 
the nullspace of the discrete curl operator and, consequently, the total number of de-
grees of freedom, which is proven to be 54, for the second order Lagrangian element 
and 36 for the Serendipity. In the following example we will build a second order 
Serendipity element. 
 The choice of degrees of freedom follows the same rules, as in the case of tetrahe-
dra. Although in the study of Whitney forms in tetrahedra we have used integral de-
grees of freedom, we could similarly use point degrees of freedom. Although it may 
be difficult to find explicit relations among point degrees of freedom for different 
Whitney forms, like (11), they have the advantage of being easier to compute. In the 
second order 1-form Whitney Serendipity element, the edge-related degrees of free-
dom, for example along ξ-edges, are defined by 

 1 1
0 0 0 02 20 0 0 0

ξ ξξ ξ
ξ ξξ ,η η ,ζ ζ ξ ,η η ,ζ ζη ,ζ η ,ζ

L Lˆ ˆF , F
2 2

+ -

=- = = = = == ◊ = - ◊F t F t , (38) 

and similarly for η- or ζ-oriented edges. Additionaly, the element requires two degrees 
of freedom in each face. A suitable definition, for example at face ξ=-1, is 

 η,ζ ζ,η
ξ ξ 1,η 0,ζ 0 ξ ξ 1,η 0,ζ 01 1ˆ ˆF S η , F S ζ=- = = =- = =- -= ¥ ◊— = ¥ ◊—F p F p , (39) 

where S is the area of face î = –1 and the p-vector is the unit vector normal to the face. 
For the sake of conformity of degrees of freedom between neighbouring elements, p-
vectors are always pointing towards the positive direction of local coordinates. 
 The derivation of the formulas for the basis functions will be done using the two 
fundamental properties of Whitney finite elements, as in the study of tetrahedral 
Whitney forms. However, in this case we could significantly simplify the procedure, 
if we adopt the restriction that basis functions should have only one covariant compo-
nent, for example a ξ-edge basis function will be given by 

 
0 0

ξ i j k
i, j,kη ,ρ

i, j,k n

a ξ η ζ ξ
+

£

Ê ˆ= —
Á ˜Ë ¯
Âw ,  (40) 

where n is the order of the approximation and the summation involves, for the mo-
ment, every possible polynomial term. This restriction, although simplifying, is not 
necessary, and a more general treatment would reveal wider classes of elements. In 
the case of hexahedral elements, it is convenient to enforce the property of correct 
gradient representation (21), (22), where the gradients of the second order nodal Ser-
endipity element basis functions are involved, before doing anything else. The final 
result of the analysis requires that most of the coefficients in (40) are null and it is 
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further simplified as follows: 

 
0 0

ξ j k j k
0, j,k 1, j,kη ,ζ

j,k 2 j,k 1

a η ζ ξ a η ζ ξ
+

£ £

Ê ˆ= + —
Á ˜Ë ¯
Â Âw , (41) 

 This general form, which is also adopted in (Crowley, 1988), justifies the term 
“mixed order elements” which is another commonly used term. In simple words, the 
variation of any field component on its own direction is of order n-1. The analysis 
reveals that this assumption is a natural consequence of the correct nullspace model-
ling property.  
 The explicit form of the basis functions is finally obtained by enforcing the prop-
erty of decoupling (20). The expressions for the hexahedral 1-form Whitney Seren-
dipity basis functions, corresponding to degrees of freedom (38), (39) are 

 
0 0

ξ
0 0 0 0η ,ζ

1 (1 η η)(1 ζ ζ)( 1 η η ζ ζ 2ξ) ξ,
8

±
= ± + + - + + —w ∓  (42) 

 
0 0

η,ζ ζ,η2 2
0 0ξ ξ

1 1(1 ξ ξ)(1 η ) ρ,    (1 ξ ξ)(1 ζ ) η
8 8

= + - — = - + - —w w , (43) 

respectively, while the others are obtained by cyclic permutation. 
 
 

6. Mesh conformity considerations  
 
The analysis of higher order Whitney 1-forms reveals a new problem in their numeri-
cal implementation, the unsymmetric placement of degrees of freedom. In each face 
of a second order vector finite element there are two degrees of freedom and a fully 
symmetric arrangement is not possible. When using third order elements, there is no 
lack of symmetry in face degrees of freedom. However, the three volume degrees of 
freedom cannot be symmetricaly defined. In both cases, special care should be taken 
to ensure that adjacent elements will have conforming degrees of freedom. In the sec-
ond order case, this means that two elements sharing the same face should have the 
same placement of degrees of freedom on it. Similarly, in neighbouring third order 
elements, the volume degrees of freedom should be consistently placed. 
 The problem of conforming mesh generation requires the definition of proper local 
numberings, to ensure conformity of degrees of freedom between adjacent elements. 
In an arbitrary tetrahedral mesh, we could introduce an appropriate algorithm, which 
would start from an element of the mesh and define the local numbering from element 
to element. However, this procedure involves elements of graph theory and it can be 
very complicated, not to mention that the algorithm may not converge or it may have 
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no solution, unless the mesh is constructed under specific structural criteria. To avoid 
this kind of complexity we concentraate on the case of structured meshes based on 
hexahedra. To preserve the property of conformity, we propose a standard local num-
bering scheme (Fig. 3). Each hexahedron is divided into six tetrahedra and the local 
numberings are chosen to guarantee conformity, both in inner and outer edges or 
faces. We emphasize that this particular scheme is valid only if the placement of de-
grees of freedom in each element is as in Fig. 2a and 2b. This scheme is very useful 
for a successful implementation of higher order vector finite elements. The use of 
structured meshes is not restrictive, since they can be used as initial meshes for in 
mesh refinement schemes.  
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Fig. 3. A local numbering scheme for mesh conformity: (a) the second order case, (b) the third order case 

 
 

7. Conclusions 
 
We have presented a generalized theory and a systematic procedure for generating 
higher order Whitney 1-forms in three-dimensions. The theory is applied in both tet-
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rahedral and hexahedral elements and produces explicit expressions for the finite 
element basis functions and a clear interpretation of degrees of freedom. The analysis 
delves into the nature of Whitney forms and vector finite elements and clarifies the 
importance of their fundamental properties, as well as the means of enforcing them to 
get the final results. Some ad hoc assumptions about the choice of degrees of freedom 
are also explained. Finally, we give some important guidelines for their implementa-
tion, related to difficulties in mesh generation. The whole analysis, although mathe-
matically oriented, gives a further insight in the fascinating subject of Whitney ele-
ments and, hopefully, provides a series of useful tools for the electromagnetic field 
analyst. Exemplary applications in electromagnetic propagation, radiation and scatter-
ing are shon in Fig. 4.  
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Fig 4.  (a) Analysis and optimization of a U-shaped microstrip antanna and 
 (b) dispersion diagram of a printed microstrip-based electromagnetic bandgap structure, using higher 

order vector finite elements macroelements. 

References 
1. Bossavit, A., Whitney Forms: a class of finite elements for three-dimensional compu-

tations in electromagnetism, IEE Proc., vol. 135, pt. A, no. 8, pp. 493-500, Nov. 1988. 
2. Cendes, Z.J., 1991. Vector finite elements for electromagnetic field computation, 

IEEE Transactions on Magnetics, 27(5): 3958-3966. 
3. Crowley, C.W., 1998. Mixed order covariant projection finite elements for vector 

fields, PhD Thesis, McGill Univ., Montreal, Canada. 
4. Kameari, A., 1990. Calculation of transient 3D eddy current using edge-elements, 

IEEE Transactions on Magnetics, 26(2), March. 
5. Lee, J. F. and Sun, D.K, 2004. p-Type Multiplicative Schwarz (pMUS) Method with 

623



624 Μέρος ΙΙ: Η Γη
 

Vector Finite Elements for Modeling Three-Dimensional Waveguide Discontinuities, 
IEEE Transactions on Microwave Theory and Techniques. 52(3): 864-870. 

6. Lee, J.F., Sun, D.K and Cendes, Z.J., 1991). Tangential vector finite elements for 
electromagnetic field computation, IEEE Transactions on Magnetics, 27(5), 4032-
4035. 

7. Manges, J. and Cendes, Z., 1996. Generation of Tangential Vector Finite Elements, 
International Compumag Society Newsletter, 3(1). 

8. Nédélec, J.C., 1980. Mixed finite elements in R3. Numer. Math., 35: 315-341. 
9. Wang, J.S. and Ida, N., 1992. Curvilinear and higher order 'edge' finite elements in 

electromagnetic field computation. IEEE Transactions on Magnetics, 29(2).  
10. Webb, J.P. and Forghani B., 1993. Hierarchal scalar and vector tetrahedra. IEEE 

Transactions on Magnetics, 29(2): 1495-1498. 
11. Yioultsis, T.V. and Tsiboukis, T.D., 1996. Multiparametric vector finite elements: a 

systematic approach to the construction of three-dimensional, higher order, tangen-
tial vector shape functions. IEEE Transactions on Magnetics, 32(3). 

12. Yioultsis, T.V. and Tsiboukis, T.D., 2001. Convergence-Optimized, Higher Order 
Vector Finite Elements for Microwave Simulations, IEEE Microwave and Wireless 
Components Letters, 11(10): 419-421. 

13. Rekanos, I.T. and Yioultsis T.V., 2006. Convergence enhancement for the vector 
finite element modeling of microwaves and antennas via differential evolution. Inter-
national Journal of Electronics and Communications, 60(6): 428-434. 

 
 
 

624




